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Editorial: Why (yet) another issue on Problem Solving? 
 

Bharath Sriraman 
  
This is the 10th volume of The Mathematics Enthusiast, consisting of 500+ pages in 18 articles 
that give reflections, directions and the state of the art of mathematical problem solving as it 
relates to the field of mathematics education. This impressive collection compiled and guest 
edited by Manuel Santos-Trigo and Luis Moreno-Armella contains a treasure trove of 
scholarship from both the pioneers of this area of research (Alan Schoenfeld, Richard Lesh, 
Frank Lester, among others)  as well as reports on new areas of study from Mexico, France and 
Spain. Two of the articles (Mamona-Downs & Downs, Selden& Selden) discuss the connections 
between problem solving and proof, and one piece (Flores & Braker) explores an interesting 
open-ended problem. There are many themes in this double issue- For instance those interested 
in advances in problem solving as a result of new technologies such as haptic devices will find 
articles (e.g., Hegedus) that report on cutting edge investigations. Others interested in cognition 
and learning trajectories as a result of problem solving practices will find articles that cater to 
this particular taste. The reflections by forerunners such as Alan Schoenfeld and Frank Lester are 
well worth reading for anyone that wants to catch up with developments in problem solving in 
the last 40 years.  
 
Mathematics education (in the U.S) has been victimized as not having “really” progressed in 
terms of experimental research by the National Mathematics Advisory Panel (see Greer, 2008), 
which prescribed algebra as a panacea to cure our students mathematical ills. As noted in an 
earlier survey (English & Sriraman, 2010) and numerous articles in this double issue, there have 
been tremendous advances in the area of problem solving which unfortunately did not translate 
into curricular or “test-score” gains as measured by the testing industry. Problem solving as 
implemented in schools in the 90’s also became a fad caught in the pendulum swing of 
mathematics education reform. Polya style heuristics that capture the nuances of real 
mathematical thinking became didactically transposed and dogmatized by the textbook industry 
into prescriptive condition-action rules or flowcharts (Lesh & Sriraman, 2010). Several articles 
in this double issue revisit Polya style heuristics and capture its real essence. Some provide 
existence “proofs” of the mathematical thinking young children are capable of when presented 
with semi structured open-ended problems in conditions that foster novelty (see Lesh, English, 
Riggs & Sevis). This should offer the community hope that problem solving research and well 
documented empirically validated skill sets can be promoted and made relevant for the new 
generation of school children, particularly in an age where thinking across the disciplines is 
necessary in many professions. Hopefully this answers the question posed in the title of the 
editorial. 
 
The journal imposed an 18 month embargo on submissions (which will end on 04/2014) to clear 
up the backlog of articles as well as make room for special issues in the works. In 2011, the 
journal received the honor of being selected by National Science Foundation's Math and Science 
Partnership (MSP) program committee to assemble and publish a set of papers over the next two 
years to expand avenues for more MSP projects to share what they are learning about 
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mathematics and science education through an internationally recognized peer-reviewed journal 
that is widely available. Over the next two years some special issues, starting with Vol10, no3 
[July 2013] will feature articles reporting on MSP projects. These projects include large 
partnerships targeting science and/or mathematics teaching and learning in specific grade bands 
or disciplinary areas, institute partnerships focusing on developing teacher leadership, 
partnership incubator (or “Start”) projects focusing on learning about institutional partnership 
development.  
 
Another important change to be noted is that TME now allows authors to retain full copyright of 
their work as opposed to transferring it to publishing entities that use our work to generate profit 
(Sriraman, 2012). Indeed the journal now exists as an independent entity, with open access, as 
well as supports professional associations like PMENA and other grass roots research groups by 
providing a peer reviewed outlet for ongoing research. Vol.11, no.3 [July 2014] will feature 
articles synthesizing 5+ years of research within the PMENA working group on Pre-service 
Elementary Mathematics Teacher Content Knowledge. This topic is particularly poignant to me 
since the first issue of this journal (vol1, no1, 04/2004) was the result of four idealistic 
elementary school teachers believing in the mission of this journal and writing about their 
attempts to reconcile the mathematics content they were learning in a mathematics for 
elementary school teachers course with existing mathematics education research found in 
practitioner’s journals as well as standards imposed by institutions framing policy.  
 
I am thankful to the community for supporting the mission and the existence of this journal. Ten 
years ago, I dared to dream and imagine the possibilities of and for this journal. Time and 
dedicated work have allowed it to flourish in myriad uncharted directions and benefit many 
people. I wish the editors, authors and readers of The Mathematics Enthusiast a Happy 2013- 
Unlike the doomsday soothsayers predictions things continue to exist! To that end for T(i)ME to 
continue to exist (pun intended), I ask for your continued support… 
         Bangalore, India 
         Jan 4, 2013. 
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Introduction to International Perspectives on Problem Solving Research 
in Mathematics Education 

 
Luis Moreno Armella1 & Manuel Santos-Trigo2 (Mexico) 

  
 

Any field of research and innovation must be exposed to revisions, criticisms and to an 

intense scrutiny not only to discuss the state of the art but, hopefully, to identify 

prospective changes and new areas of study and exploration as well.  

Problem Solving has been such an area, with a prominent place in mathematics education 

and whose contributions continuously appear in conference proceedings, handbooks, 

journals, books and, more recently, in digital endeavors. Problem Solving involves an 

approach that fosters reflection and delving into mathematical ideas to explain 

individuals’ cognitive behaviors within social media. Here, we argue that ideas do not 

live by themselves isolated from the semantic networks that sustain the life of cognition: 

meaning. These networks constitute a key ingredient for developing understanding and 

structural perspective of concepts through problems. In the long term, (and maybe not 

that long) these networks provide integration of knowledge that learners need to construct 

and integrate in order to gain a wide perspective. 

Problem Solving drives developments through research programs, curriculum design, 

teachers’ mathematical education, and mathematical instruction at the level of the 

classroom. Taking this and more into due account, and in order to identify current trends 

in mathematical problem solving and to foster a further exchange of ideas within our 

                                                 
1 lmorenoarmella@gmail.com] 
2 msantos@cinvestav.mx 
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community, we discussed the present project with Bharath Sriraman, the editor of The 

Mathematics Enthusiast, who generously accepted to devote a special issue of the Journal 

to Mathematical Problem Solving. We invited colleagues, who have made significant 

contributions to this field, to contribute to the special issue. Previously, we had identified 

some lines of development to eventually frame their contributions. Of course this was not 

meant as a restriction to their freedom; rather to orient their possible directions.  Some 

questions were posed and discussed to help us identify possible themes to consider in the 

volume. Thus, we tried to answer: What are the current trends in problem solving 

research and what are the main results that influence teachers’ practices and curricula 

design? In addition, with the significant development of digital tools and environments, 

we are in need to understand to what extent the present research agenda is being or need 

to be transformed by their influence. This touches, for instance, deep epistemic issues 

concerning the nature of valid mathematical reasoning and results in mathematics in the 

classroom. We have to take into account that mediation tools are not neutral, neither from 

the cognitive nor from the epistemic viewpoint. That the knowledge students generate 

and/or appropriate, is intertwined with these tools. However, we cannot forget that a 

school culture always leaves significant marks on students’ and teachers’ values. Artigue 

(2005, p. 246) states that ‘‘these [previous] values were established, through history, in 

environments poor in technology, and they have only slowly come to terms with the 

evolution of mathematical practice linked to techno- logical evolution.’’ Thus, the school 

culture requires the gradual re-orientation of its practices to gain access to new habits of 

mind and to the new environments resulting from a serious presence of digital 

technologies. 
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We consider that how we understand the learning of mathematics through a problem-

solving approach is deeply related, today, with the presence of the mediation tools that 

students will find and use in and outside the classroom.  

We have shared with the invited authors a list of themes; we would like to mention some 

of them we consider particularly relevant. 

 

Mathematical Problem Solving Foundations. Any domain of study needs to make 

explicit tenets and principles that support and justify its academic agenda. As we 

mentioned before, we are interested in documenting the extent to which theoretical and 

pragmatic frameworks are helpful to explain the problem solvers’ development of new 

mathematical knowledge. Besides taking into account the role of meditational tools as the 

foundation of a research program, we need to consider as well the contrasts with a 

modeling approach to problem solving.  

It is relevant to investigate how the presence of digital tools has transformed the agenda 

of problem solving approaches, which, in its early stages, has developed within a culture 

of paper and pencil mathematics.  Of course, the lines of reasoning supported with and 

within, the new expressive media reflects what we have, before, termed the cognitive and 

epistemological consequences of the digital tools. 

 

 

Mathematical Problem Solving and International Students’ Mathematical 

Assessment. Currently, results from international assessments like PISA or TIMSS are 

used to compare or contrast students’ mathematical competences among different 



  Moreno-Armella & Santos-Trigo 

 

countries. In general, the media use the results to talk about the success or failure of 

national educational systems in science, mathematics, and language. Thus, it becomes 

important to discuss issues regarding the role of problem solving activities in the 

students’ development of competences associated with those types of assessments. Some 

questions to discuss in this section involve: 

a) How are PISA and TIMSS goals and ways to assess students’ 

mathematical achievement related to mathematical problem solving? Is the 

PISA framework consistent with frameworks used in mathematical 

problem solving? 

b) What makes a good task or problem foster and evaluate the students’ 

mathematical thinking? The role of routine and non-routine problems in 

problem solving approaches. 

c) How can a problem be used for teaching and evaluating the students’ 

comprehension of mathematical concepts? 

d) To what extent should we expect students to pose and solve their own 

problems? 

e) To what extent international assessments like PISA or TIMSS actually 

evaluate problem-solving competences, including those that demand the 

use of computational technology? 

 

Mathematical Problem Solving and Curriculum Frameworks. A distinguishing 

feature of some current curriculum proposals is that they are structured to enhance 

problem-solving activities through all school levels. However, there is a need to discuss 
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what those proposals entail and should include in terms of contents and mathematical 

processes. Thus, relevant questions to discuss in this section involve the structure and 

organization of a curriculum centered in problem solving activities. Besides, we need to 

identify fundamental ideas and processes that are central to foster students´ appropriation 

of mathematical knowledge and the ways digital media can be incorporated within the 

eventual proposals. Needless to say, the assessments conundrum will be lurking turning 

the corner.  

As a consequence, the presence of digital technologies in education calls us to address 

this fundamental issue that curricular structures eventually will be inhabited by these 

technologies. It has already happened in the past: the technology of writing and the 

technology of positional notation of numbers are two of the milestones in the history of 

semiotic representations with a living impact on education. 

 

 

Future developments of Mathematical Problem Solving. It is widely recognized that 

students should develop abilities, mathematical resources, and ways of thinking that help 

them formulate and solve not only school problems but also situations that they encounter 

outside the institutional settings. In this context, it becomes important for students to 

examine and explore phenomena in which they have the opportunity to examine 

information embedded in a variety of contexts in order to formulate, explore, and 

formulate meaningful mathematical questions. Thus, we will be in need to research the 

extent to which students can transfer problem-solving experiences learnt within the 

school context to new situations. This will of course, demands from the students the 
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abilities to move across the semantic field of a mathematical notion. This is far from 

being a trivial activity.  

For instance how could students through problem solving phases that involve gathering 

data, modeling activities, find solutions and provide interpretations? 

We received a positive response to our invitation letter from the authors and their 

contributions often address several issues discussed above. We hope that readers will find 

the contents of these two special issues useful to reflect on and extend their views about 

problem solving and we invite all to continue the discussion directly with the authors and 

other members of the problem solving community.  
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Reflections on Problem Solving Theory and Practice  
  

Alan H. Schoenfeld1 

University of California, Berkeley, CA, USA 

Abstract: In this article, the author reflects on the current state of mathematical problem 
solving, both in theory and in instruction. The impact of the book Mathematical Problem 
solving (Schoenfeld, 1985) is also discussed, along with implications of problem solving 
today with the advent of 21st century technologies.   
 
Keywords: Mathematical problem solving; Mathematics teaching; Mathematical 
learning 
 

Introduction 

My book Mathematical Problem Solving (Schoenfeld, 1985), which I shall refer 

to as MPS) was published more than 25 years ago. MPS, which was fundamentally 

concerned with research and theory, had been developed in dialectic with a course in 

problem solving at the university level. The book provided a theoretical rationale for the 

course, and evidence that it worked; the course was an existence proof that, with the 

“right” kinds of instruction, students could become more effective problem solvers. The 

book-plus-course addressed a series of theoretical and pragmatic questions, some of 

which they answered, some of which they suggested answers to, and some of which they 

left unaddressed. Either directly or by logical extension the ideas in the book had the 

potential for significant curricular impact, if the “lessons” in them were taken seriously. 

The question is, what has been the fate of the ideas that the book and the course 

embodied? Which ideas survived, which flourished? Which evolved in unpredictable 

                                                 
1 Alans@Berkeley.edu 
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ways, which withered with unfulfilled promise? I am grateful to the editors for the 

opportunity to reflect on the past and to think about future opportunities. 

I begin by describing what, in my opinion, were the achievements, failures, and 

potential of that early work (which, of course, built upon and reflected the state of the 

field in 1985). This is followed by a characterization some of the main outcomes of the 

evolution of problem solving research and development. There is, of course, a huge 

literature on problem solving. It is impossible to do justice to that literature, and my 

comments will be selective. My most general comments are based, in part, on the volume 

Problem solving around the world – Summing up the state of the art (Törner, Schoenfeld, 

& Reiss, 2008). That volume provides a recent overview of theory and practice (and to 

some degree, curricular politics) in a wide variety of nations. This article will update my 

article in that volume (Schoenfeld, 2008), characterizing recent and potentially significant 

events in the U.S.  

 

Problem Solving as of 1985 – a retrospective view 

In theoretical terms, what MPS offered in 1985 was a framework for the analysis 

of the success of failure problem solving attempts, in mathematics and hypothetically in 

all problem solving domains. “Problem solving” at its most general was defined as trying 

to achieve some outcome, when there was no known method (for the individual trying to 

achieve that outcome) to achieve it. That is, complexity or difficulty alone did not make a 

task a problem; solving a system of 100 linear equations in 100 unknowns without the 

use of technology might be a real challenge for me, but it is not a problem in the sense 

that I know how to go about getting an answer, even if it might take me a very long time 

and I agonize over the computations. 
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The core theoretical argument in MPS, elaborated slightly in Schoenfeld (1992), 

was that the following four categories of problem solving activity are necessary and 

sufficient for the analysis of the success or failure of someone’s problem solving attempt: 

a) The individual’s knowledge;   

b) The individual’s use of problem solving strategies, known as heuristic 

strategies;   

c) The individual’s monitoring and self-regulation (an aspect of metacognition); 

and 

d) The individual’s belief systems (about him- or herself, about mathematics, 

about problem solving) and their origins in the students’ mathematical 

experiences. 

Regarding (a), little needs to be said; one’s mathematical knowledge is clearly a 

major determiner of one’s mathematical success or failure.  Regarding (b): In 1985 I 

singled out heuristic strategies for special attention, because my major intuition when I 

began doing research on problem solving was that, with the right kinds of help, students 

could learn to employ the heuristic problem solving strategies described by Pólya 

(1945/57, 1954, 1962,65/81). Regarding (c): research over the course of the 1970s and 

early 1980s had revealed that how well problem solvers “managed” the resources at their 

disposal was a fundamental factor in their success or failure. When working complex 

problems, effective problem solvers monitored how well they were making progress, and 

persevered or changed direction accordingly. Unsuccessful problem solvers tended to 

choose a solution path quickly and then persevere at it, despite making little or no 

progress (see, e.g., Brown, 1987; Garofalo & Lester, 1985).  Finally, regarding (d): by the 
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time that MPS was published, many counterproductive student beliefs, and their origins, 

had been documented. For example, students whose entire mathematical experience 

consisted of working exercises that could be solved in just a few minutes came to believe 

that “all problems can be solved in five minutes or less,” and ceased working on 

problems that they might have been able to solve had they persevered. 

By these categories of behavior being “necessary and sufficient” for the analysis 

of problem solving success or failure, I meant that: 

They were necessary in the sense that if an analysis of a problem solving failed to 

examine all four categories, it might miss the cause. It was easy to provide 

examples of problem solving attempts for which each of the four categories above 

was the primary cause of success or failure. 

They were sufficient in that (I posited that) no additional categories of behavior 

were necessary – that the root cause of success or failure would be found in 

categories (a) through (d) above.  

In MPS I claimed that the framework described above applied for all of 

mathematical problem solving; I had ample evidence and experience to suggest that that 

would be the case. I conjectured, on the base of accumulated evidence in other fields, that 

the framework applied to all problem solving domains, broadly construed. If you take 

problem solving in any of the sciences, there was a face value case for the framework. 

The relevant knowledge and strategies would be different in each domain – knowledge 

and heuristic strategies are different in physics or chemistry than in mathematics – but it 

was easy to se that the framework fit. But the potential application was broader. Consider 

writing, for example. Someone who sits down to write an essay, for example, is engaging 
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in a problem solving task – the task being to create a text that conveys certain 

information, or sways the opinion, of a particular audience. Various kinds of knowledge 

are relevant, both factual and in terms of text production. Writers use heuristic strategies 

for outlining, using topic sentences, etc. They can profit from monitoring and self-

regulation; or they can lose track of their audience or argument, thus wasting time 

producing text that will ultimately be discarded. Finally, beliefs are critically important: 

the writer who believes that writing simply consists of writing down what you think will 

produce very different text from the writer who believes that crafting text is a challenging 

art requiring significant thought and multiple edits. 

In sum, MPS offered a framework for analyzing the success or failure of problem 

solving, potentially in all problem solving domains. At the same time, the work reported 

in MPS had significant theoretical limitations. My analyses of problem solving all took 

place in the lab: one or two individuals sat down to work on problems that I had chosen. 

In various ways, this represented very significant constraints on their problem solving, 

and thus on my analyses. First, they were given the tasks. In most real-world problem 

solving, the tasks emerge in practice and have a history or context of some sort. Second, 

the goals were pre-determined (the students were to solve my problem) and the problems 

themselves were fixed. In problem solving “au naturel,” goals and the problems 

themselves often change or emerge in interaction. Third, the timescale was relatively 

short. Fourth, social interactions were minimal. Fifth and most important, MPS offered a 

framework, highlighting what was important to examine in order to explain success or 

failure.  What MPS did not offer was a theory of problem solving – a characterization that 

allowed one to explain how and why people made the choices they did, while in the midst 
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of problem solving. All of these were limitations I wished to overcome. My ultimate 

theoretical goal has been to provide a theoretical explanation that characterizes, line by 

line, every decision made by a problem solver while working on a problem (trying to 

achieve one or more complex goals) in knowledge intensive, highly social, goal-oriented 

activities.  In 1985 that goal was far beyond what the field could do.  

Let me now turn to issues of practice. First and foremost, MPS was an existence 

proof, at multiple levels. At the macro level, the book provided evidence that my problem 

solving courses really worked – that my students became much more effective problem 

solvers, being able to solve more and more difficult unfamiliar problems after the course 

than before. At a finer level of grain size, examining students’ work after the course 

showed that it was indeed possible for the students to master a range of problem solving 

heuristics; that they could become more effective at monitoring and self-regulation; and 

that on the basis of their experiences in the course, students were able to evolve much 

more productive beliefs about themselves and mathematics. At a yet finer level of grain 

size, MPS offered a methodological blueprint for developing problem solving instruction.  

The challenge in 1975, when I began my problem solving work, was that heuristic 

strategies “resonated” – when mathematicians read Pólya’s books his descriptions of 

problem solving strategies felt right – but, it had not yet been possible to teach students to 

use such strategies effectively.  A major realization was that Pólya’s descriptions of the 

strategies were too broad: “Try to solve an easier related problem” sounds like a sensible 

strategy, for example, but it turns out that, depending on the original problem, there are at 

least a dozen different ways to create easier related problems. Each of these is a strategy 

in itself; so that Pólya’s name for any particular strategy was in fact a label that identified 
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a family of strategies. Once I understood this, I could “take apart” a family by identifying 

the main strategies that fell under its umbrella. I could teach each of those particular 

strategies (e.g., solving problems that had integer parameters by looking at what 

happened for n = 1, 2, 3 , 4 . . . ; looking at lower-dimensional versions of complex 

problems; etc.), and when the students had learned each of these, they had mastery of the 

family of strategies that Pólya had named. What that meant was that understanding and 

teaching Pólya’s strategies was no longer a theoretical challenge, but an empirical one. 

One could imagine a purely empirical, pragmatic program: take the main heuristic 

strategies identified by Pólya; consider each as a family of strategies and decompose 

them into their constituent parts; and work out a straightforward instructional program 

that enabled students to learn each of the constituent strategies.  In this way, it should be 

possible to make problem solving accessible to all students. I hoped that some such work 

would take place. 

 

A quarter-century later . . . 

Issues of theory 

Here there is good news, both in terms of what has been achieved and how the 

theoretical horizon has expanded. As noted above, the major challenge with regard to 

problem solving was to build a theory of problem solving, rather than a framework for 

examining it. More broadly, the challenge was to build a theory of goal-oriented decision 

making in complex, knowledge-intensive, highly social domains. Mathematical problem 

solving or problem solving in any content area, is an example. The goal is to solve the 

problem; knowledge (including knowledge of various strategies) is required; and, 

depending on the context, the problem solving activities may be more or less socially 
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engaged. Mathematics (or other) teaching is another, much more complex activity. The 

goals here are to help students learn mathematics. Achieving those goals calls for a huge 

amount of knowledge and strategy, and for deploying that knowledge amidst dynamically 

changing circumstances: when a student suddenly reveals a major misconception, for 

example, or it becomes apparent that the class does not have a good grip on something 

that the teacher thought they understood, the current “game plan” has to be revised on the 

spot and something else put in its place. In fact, if you can model decision making during 

teaching, it is straightforward to model decision making in other complex knowledge-

intensive domains such as medical practice, electronic trouble-shooting, and more.  

By “model” I mean the following. One needs to specify a theoretical architecture 

that says what matters, and say how decision making takes place within that architecture. 

Then, given any instance of such decision making (e.g., problem solving or teaching), 

one should be able to identify the things that matter in that instance, and show how the 

decision making took place in a principled way (that is, through a structured model 

consistent with the theoretical architecture), using only the constructs in the theoretical 

architecture to build and run the model. By way of crude analogy, think of Newton’s 

theory of gravity as providing a theoretical architecture (the inverse square law) for 

characterizing the motion of a set of objects. For each object (say the planets in our solar 

system, plus the sun) the some parameters need to be specified: mass, position , direction, 

velocity. The model of the solar system is given these data for time T, and the theory is 

used to specify these parameters for time T+1.  The theory, then, is general; each model 

(whether of our solar system or some other galactic system) is a specific instantiation of 

the theory. The quality of any particular model is judged by how well the behavior of the 
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objects represented in the model corresponds to the behavior of the objects being 

represented. (A model of the solar system had better produce motion that looks like the 

motion of the planets in our solar system!) The quality of the theory is judged by its 

accuracy and it scope – what is the range of the situations for which it can generate 

accurate models? (A theory that only modeled two-body gravitational systems wouldn’t 

be very exciting.) 

Twenty-five years after MPS was published, my new book How We Think 

(Schoenfeld, 2010) builds on the earlier work and lays out the structure of a general 

theory of in-the-moment decision making. The architecture it describes is 

straightforward: what one needs for a theoretical account of someone’s decisions while 

that person is engaged in a familiar goal-oriented activity such as problem solving, 

teaching, or medical practice is a thorough description of: 

a) The goals the individual is trying to achieve;   

b) The individual’s knowledge (and more broadly, the resources at his or her 

disposal);   

c) The individual’s beliefs and orientations (about himself and the domain in 

which he or she is working); and 

d) The individual’s decision-making mechanism. 

These categories represent the natural evolution of the categories in the 1985 

framework. Regarding (a), depicting the goals is necessary in that the theory describes a 

much broader spectrum of behavior than problem solving. Depending on context, one’s 

highest priority goal may be, for example: to solve a problem; to make sure that one’s 

students understand a particular body of mathematics; or to diagnose a patient 
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appropriately and set him or her on a path toward recovery. Regarding (b), the role of 

knowledge is still central, of course: what one can achieve depends in fundamental ways 

on what one knows.  In my current theoretical view I fold access to and implementation 

of heuristic strategies into the category of knowledge. I always viewed problem solving 

strategies as a form of knowledge, of course – but, in the problem solving work I was 

trying to validate their importance and utility, so they were separated out for special 

attention. In addition, I add “resources” into the category of “what the individual has to 

work with”: the approach one takes to a problem may vary substantially depending on, 

for example, whether one has access to computational tools on a computer. Regarding 

(c), beliefs still play the same central role in shaping what the individual perceives and 

prioritizes as in my earlier work. I have chosen to use the word orientations (including 

preferences, values, tastes, etc.) as a more encompassing term than beliefs because, for 

example, choices of what to purchase for dinner and how to cook it, while modelable in 

terms of the architecture I specify, aren’t necessarily a matter of beliefs. 

Regarding (d), the decision making mechanism in the theory is implemented in 

two ways. If circumstances are familiar – that is, one is collecting homework or going 

over familiar content in class – people use various mechanisms described in the 

psychological literature (scripts, frames, schemata, etc.) that essentially say what to do 

next. If circumstances suddenly vary from the predictable – e.g., a student makes a 

comment indicating a serious misconception, an explanation obviously doesn’t work – 

then it is possible to model the individual’s decision making using a form of subjective 

expected utility. (The various options that might be used are evaluated in light of their 

perceived value to the person being modeled, and the higher a valuation an option 
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receives the more likely the option is to be chosen.) Monitoring and self-regulation, 

which were a separate category in MPS, still play a centrally important role – but here 

they are placed as a major component of decision making. 

To my mind How We Think has roughly the same status today that MPS had in 

1985. The book offers a number of very detailed case studies, showing how a wide range 

of mathematics teaching can be modeled, and an argument suggesting (by virtue of the 

breadth of “coverage” in the cases) that the model applies to all teaching. Then, there are 

suggestions that the theory should suffice to describe goal-oriented decision making in all 

knowledge-intensive fields. This is a heuristic argument similar to the argument I made in 

1985, that the problem solving framework I explicated for mathematics should apply to 

all problem solving disciplines. Time will tell if the theory holds up. 

While How We think brings to fruition one theoretical line of inquiry, it also 

opens up a number of others – lines of investigation that I think will be fruitful over the 

coming decades. These may or may not strike the reader as falling under the banner of 

“problem solving” – but, they should, if the question is, what do we need to know about 

thinking, teaching, and learning environments to help students become more effective 

mathematical thinkers and problem solvers? (I will revisit this question directly when we 

turn to practical issues.)  

My work to date has examined problem solving through the lens of the individual, 

at any point in time. That is, the question has been, how and why does the individual go 

about making decisions in the service of some (problem solving) goals, given what he or 

she knows? These are serious limitations. First, the focus on what is happening in the 

moment ignores questions of learning and development. The person who has worked on, 
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and solved, a problem, is not the same person who began working on it. He or she 

approaches the next problem knowing more than before. So, one question is, how can 

issues of learning and development be incorporated into a theory of decision making? 

This is a deep theoretical question, which may not have immediate practical applications 

– but, if we can trace typical developmental trajectories with regard to students’ (properly 

supported) ability to engage in problem solving, this might help shape curriculum 

development. More generally, if our goal is to theorize cognition and problem solving, 

such issues need to be addressed.  

Second, individuals do not work, or learn, in a vacuum. As will be seen below, 

characterizing productive learning environments – and the norms and interactions that 

typify them – is an essential endeavor, if we are to improve instruction. But learning 

environments are highly interactive, and the ideas that individuals construct are often 

built and refined in collaboration with others. At minimum, a theory of learning and 

cognition that explains how ideas grow and are shared in interaction is critical. There is 

much to be done on the theoretical front. 

Issues of practice 

Here, the question is whether one wishes to view the metaphorical glass as being 

half empty or half full. There is reason to be disheartened, and reason to be encouraged. 

And there is work to be done. 

On the one hand, there are ways in which we could and should be much further 

along in curricular development (and the research that would undergird it) than we are. 

As explained above, there was an implicit blueprint for progress in MPS: the methods I 

described for decomposing heuristic strategies into families of more fine-grained 
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techniques, and finding out how much instruction was necessary for those techniques to 

become learnable, were well enough characterized for others to implement them. That is, 

25 years ago it was theoretically possible to begin a straightforward program of 

development that would result in successful instruction on a wide range of problem 

solving strategies. “All” that was needed was a huge amount of work! That work did not 

get done. There are systemic reasons for this, which Hugh Burkhardt and I (Burkhardt & 

Schoenfeld, 2003) have explored. University reward systems work against this kind of 

work. There is no theoretical “glory” in working through such pragmatic issues, either for 

the individual or in terms of promotion decisions at research universities. Making 

significant progress at the curricular level calls for a team of people, and university 

reward structures are stacked against that as well – our system tends to reward individual 

achievements, and to give less credit for collaborative work. Perhaps for those reasons, 

perhaps because there are fads and fashions in educational research (as in all fields), an 

area that I considered to be fertile ground for practical development went unexplored. I 

think that’s a shame. 

At the same time, some good things have happened in K-12 education. A global 

summary of developments can be found in Törner, Schoenfeld, & Reiss, 2008. Here I 

will summarize the optimistic view regarding the past 25 years in the U.S., and then point 

to the fact that we are at a turning point, where much hangs in the balance.  

In contrast to some nations where a ministry of education or its equivalent makes 

curricular decisions that are implemented nationwide, the U.S. has had what is best 

described as a “loosely coupled” system. For almost all of its history, each of the states 

had its own educational system, which was responsible for setting statewide standards. 
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Historically, textbook decisions have been local – each of the roughly 15,000 school 

districts in the U.S. could choose is own textbooks. Until the past decade, few states had 

statewide assessments, so there was little pressure to “teach to the test.” There were 

homogenizing factors, of course. There were a small number of textbook publishers, so 

textbook choice, though theoretically unconstrained, was limited in practice; and, most 

school districts aimed at preparing their college-intending students for the (essentially 

universal) college calculus course, so the goal state was clearly established. By tradition, 

grades K-8 focused on arithmetic and then pre-algebra; algebra I was taken in 9th grade, 

plane geometry in 10th, algebra II and possibly trigonometry in 11th, and pre-calculus in 

12th. Some students accelerated through calculus in high school; many students dropped 

out of the pipeline altogether. (The generally accepted figure in the 1980s was that each 

year, some 50% of the students at each grade level in secondary school failed to take the 

next year’s mathematics course.) There was huge variation in the courses students took, 

but “traditional” instruction focused mostly on conceptual understanding and mastery of 

skills and procedures. There was a negligible amount of “problem solving,” by any real 

definition. 

In 1989 the National Council of Teachers of Mathematics produced the 

Curriculum and Evaluation Standards for School Mathematics. The volume was intended 

for teachers, and had few references; but the authors knew the problem solving research, 

and it showed. For the first time in a major policy document, there was a significant 

emphasis on the processes of doing mathematics: The first four standards at every grade 

level focused on problem solving, reasoning, communication using mathematics, and 

connections within and outside of mathematics. The U.S. National Science Foundation, 
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recognizing that commercial publishers would not build such textbook series on their 

own, issued a request for proposals for the creation of “Standards-based” texts. In each of 

these texts, the authors elaborated their own vision of what it meant to learn according to 

the Standards. This variety was a good thing: different visions of a richer mathematics, 

focused on problem solving and reasoning, began to emerge. It is hard to get precise 

figures, but some estimates are that 20-25% of the K-12 textbooks in use today are 

Standards-based. Given the vagaries of the “loosely coupled” educational system in the 

U.S., that’s a non-trivial impact for research ideas! (Of course it took 25 years, and the 

ideas don’t necessarily reflect, and may sometimes be contradictory to, the views of the 

original researchers. But that’s the way the system works.)  

So, there has been curricular progress in K-12 mathematics in the U.S., if not as 

much as one would like. Recent political events mean that the progress will either be 

accelerated or blocked, in the near future. As part of an attempt to improve mathematics 

instruction called the “Rate to the Top” initiative (see 

http://www2.ed.gov/programs/racetothetop/index.html), the federal government offered 

fiscal incentives to collections of states that produced high quality standards and plans for 

assuring that students reached them. Given the short time frame to apply for funding, the 

U.S. National (State) Governors Association and the Council of Chief State School 

Officers supported an effort to construct a set of standards for mathematics, known as the 

Common Core State Standards (see http://www.corestandards.org/, from which the 

Common Core State Standards for Mathematics (CCSSM) can be downloaded.)  

As of this writing, 44 of the 50 states have committed to the Common Core 

initiative, meaning that they will replace their current state standards with CCSSM. By 
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federal statute, they will need to use assessments (tests) that are deemed consistent with 

the CCSSM in order to measure student progress toward the goals of CCSSM. Two 

national consortia have been funded to produce assessments consistent with the CCSSM: 

PARCC (the Partnership for Assessment of Readiness for College and Careers; see 

http://www.achieve.org/PARCC) and the SMARTER Balanced Assessment consortium 

(see http://www.k12.wa.us/smarter/). By the time this article appears, both consortia will 

have published their “specs” for assessments consistent with CCSSM. Simply put, those 

assessments (tests) will shape the mathematics experiences of the students in the states 

that have committed to the Common Core State Standards initiative.  As we know, testing 

– especially high-stakes testing – determines the foci of classroom instruction. The 

CCSSM place significant emphasis on what they call mathematical practices, claiming 

that people who are mathematically proficient: 

 Make sense of problems and persevere in solving them.  

 Reason abstractly and quantitatively.  

 Construct viable arguments and critique the reasoning of others.  

 Model with mathematics.  

 Use appropriate tools strategically.  

 Attend to precision.  

 Look for and make use of structure. 

 Look for and express regularity in repeated reasoning.  

If the tests produced by the consortia provide students with opportunities to 

demonstrate such mathematical habits of mind, the tests will serve as a lever for moving 

the K-12 system in productive directions. But, if they consist largely of short answer 
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questions aimed at determining students’ mastery of facts and procedures, they will serve 

impede the kind of progress we have been making over the past 25 years. 

In sum, progress in K-12 has been slow but steady; it may get a boost or a setback 

in the immediate future, depending on the high-stakes tests that the two assessment 

consortia adopt. But there has been significant progress. I wish I could say the same 

about collegiate mathematics over the same time period. For a while calculus reform 

flourished, but it seems to have stabilized and become “same old, same old.”  There have 

been glimmers of excitement surrounding innovations in linear algebra and differential 

equations (stimulated in some part by technology), but not so much that the general 

zeitgeist of collegiate mathematics instruction is noticeably different from what it was 

when I was a math major.  And that was a long time ago! 

 

Rethinking “problem solving” 

I got my “start” in problem solving and I still think that, in some ways, it deserves 

to be called “the heart of mathematics” (Halmos, 1980).  More broadly, there is a view of 

mathematics as the “science of patterns” (Steen, 1988). What I like about this framing is 

that one thinks of science as consisting of systematic explorations – and mathematics as 

we practice it certainly has that character. This broad a framing includes problem posing 

as well as problem solving, and a certain form of empiricism, which was made explicit in 

Pólya’s (1954) title, “patterns of plausible inference.” In doing mathematics we explore; 

we seek systematicity; we make conjectures; and, we use problem solving techniques in 

the service of making and verifying those conjectures. Yet more broadly, we engage in 
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“thinking mathematically” – a title used by John Mason, Leone Burton, and Kaye Stacey 

(1982, 2010) and which I wish I’d thought of. Here I want to push things one step further. 

At heart, doing mathematics – whether pure or applied – is about sense-making. 

We observe an object, or a relationship, or a phenomenon, and we ask: What properties 

must it have? How do we know? Do all objects that look like this have the same 

property? Just what does it mean to “look like this”? Are there different ways to 

understand this? With that mindset, simple objects or observations become the starting 

points for explorations, some of which become unexpectedly rich and interesting. Third 

graders observe that every time they add two odd numbers the sum is even. Must it 

always be so? How would one know? We observe that some numbers can be factored, 

others can’t. How many of the unfactorable kind are there? How can I measure the height 

of a tree without climbing it? How many different crayons do I need to color a map, so 

that every pair of countries that share a border have different colors?  

What I strive to do in my problem solving courses is to introduce my students to 

the idea that mathematics is about the systematic exploration and investigation of 

mathematical objects. Elsewhere (see, e.g., Schoenfeld, 1989; see also Arcavi, Kessel, 

Meira & Smith,  1998; English & Sriraman, 2010) I have described our first-week 

discussions of the magic square. We start with the 3 x 3, which my students solve easily. 

But that is just a start. Did we have to get an answer by trial and error, or are there 

reasons that even numbers go in the corners, and that 5 goes in the center? Is the solution 

unique (modulo symmetry), or are there distinct solutions? Having finished with the 

original 3 x 3, we ask: what if I had nine other integers? Say 2 through 10, or the odd 

numbers from 1 through 17, or any arithmetic sequence? Can we find a magic square for 
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which the sum of each row, column, and diagonal is 87? How about 88? We observe that 

if we multiply all the cells in a magic square by a constant, we get a magic square; if we 

add a constant to each cell, we get a magic square. Thus, we can generate infinitely many 

3 x 3 magic squares. But can we generate all the 3 x 3 magic squares this way?  

The reason for this discussion is that I want to introduce my students to what it 

means to do mathematics. I want them to understand that mathematics isn’t just about 

mastering facts and procedures, but that it’s also about asking questions (problem posing, 

if you will) and then pursuing the answers in reasoned ways. The problem solving 

strategies are tools for sorting things out, seeing what makes the mathematical objects 

and relationships “tick.” So yes, we are solving problems, but as part of a larger sense-

making enterprise. That, in part, is why attending to my students’ beliefs is so important a 

part of the course. Having been “trained” by their prior experience to understand 

(believe) that doing mathematics means “mastering” content selected and organized by 

others; that all problems can be solved in short order, usually by the techniques the 

teacher has presented within the past week; that proofs have nothing to do with 

discovery; and so on2, my students needed to be “untrained” or “retrained” by their 

experiences in my course. Thus I give them extended opportunities to make observations 

and conjectures, and provide them with the tools that enable them to experience the doing 

of mathematics as a sense-making activity. 

My question is, can’t we approach all mathematics teaching this way? I believe 

that all of K-12 mathematics, and a good deal of collegiate mathematics, can be seen as a 

set of sensible answers to a set of sensible questions. Given the pace at which K-12 

                                                 
2 See Schoenfeld (1992) for a list of counterproductive beliefs that students typically 
develop. 
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mathematics proceeds, I am sure that this could be done without any formal loss of 

content. What would be gained is that students would experience mathematics as an 

exciting sense-making domain, which is the way we see it as mathematicians. If K-12 

students truly experienced mathematics that way, I’m willing to be that similarly oriented 

collegiate instruction could build on well-established habits of mind, and proceed much 

more effectively than it currently does. (Despite the fact that the students in my problem 

solving courses through the years could be labeled “the best and the brightest” – it’s a 

non-trivial achievement to get into Berkeley – my feeling has always been that my 

problem solving courses have been remedial in a significant way. The vast majority of 

the students who entered those courses were unaware of basic mathematical problem 

solving strategies, and, as a function of their experience, did not view mathematics as a 

domain that they could make sense of.) 

 

Rethinking Research on Classroom Environments 

A comment made by one of the advisory board members of one of my projects 

(“Classroom Practices that Lead to Student Proficiency with Word Problems in Algebra”, 

NSF grant DRL-0909815), struck me as particularly interesting. Megan Franke (2011) 

noted that, of the various classroom variables she had looked at, the one that seemed to 

have the strongest impact on student learning was the amount of time students spent 

explaining their ideas. This resonates, not only with the discussion of sense-making 

above, but with an emerging body of research focusing on the character of classroom 

environments that support the kinds of rich student engagement and thinking that one 

would like.  Engle, for example (Engle, in press; Engle and Conant, 2002) has developed 
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a “productive disciplinary engagement framework.” Reviewing the best-known examples 

of rich learning environments in mathematics and science, Engle concludes that the most 

powerful learning environments all include aspects of: 

 Problematizing – students participate in the act of framing meaningful 

questions, which the class explores. 

 Agency and authority – students are empowered to seek information, distill it, 

craft arguments, and explain them.  

 Disciplinary accountability – students learn what it is to make claims and 

arguments that are consistent with disciplinary norms. 

 Resources – when tools or information is needed, the students have access to 

them.  

For an elaboration of these ideas with examples drawn from my problem solving 

courses, see Schoenfeld (2012). Gresalfi, Martin, Hand, & Greeno (2009) offer a 

framework (see Fig. 1) that indicates ways on which classroom participation structures 

can lead to differential outcomes in terms of student agency, argumentation, and 

accountability. 
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Fig. 1. A model of how competence gets constructed in the classroom. 
From Gresalfi, Martin, Hand, & Greeno (2009), p. 54, with permission. 

This kind of framework can be useful, as we seek to understand both how to craft 

classrooms more focused on sense making and to document their effects. 

 

Rethinking Technology (a.k.a. entering the 21st century) 

When I took my first statistics class, all of the examples were “cooked.” This was 

before the days of widespread access to calculators and computers, so everything I did 

had to be hand-computable. As a result, the variation of every distribution I worked with 

was a perfect square! The presence of computational technology should have radicalized 

the ways in which our students can engage with statistics, in that no data analysis is now 

an obstacle. Students should be able to ask their own questions and gather their own data. 

Yet, few students have this experience. In Schoenfeld (2012) I give the example of how, 

sitting at my desk in early June and watching it rain, I wondered whether this was 
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atypical. The San Francisco Bay Area is supposed to have a “dry” season, and it seemed 

that we had gotten more rain than we should have.  Using Google I was quickly able to 

find data regarding annual monthly rainfall and recent rainfall, at which point I could do 

some simple statistical analyses to verify that this year’s June rainfall was anomalously 

high. (In fact, it went on to set a record.)  From my perspective, I was clearly doing 

mathematics. My question is, where do today’s students learn to gather such information 

and to operate on it? Asking questions, seeking data, building models, and drawing 

inferences should be everyday experiences for our students. 

Similarly, the presence of computational tools – whether symbolic calculators, 

graphers, or Wolfram Alpha (see http://www.wolframalpha.com/) – has the potential to 

radically reshape the knowledge to which students have access in mathematics 

classrooms, and the ways they can operate on it. Pure mathematics can become an 

empirical art for students in ways that it was not, even for mathematicians, until recently. 

Where are students learning to harness these skills – not for the sake of learning to be 

fluent with technology, but as means to mathematical ends? There have been some 

inroads along these lines, for example with dynamic geometry software, but for the most 

part these positive examples are the exceptions that probe the rule.  

 

Concluding Comments 

I thank to the editors for the opportunity to think about the current state of 

mathematical problem solving, both in theory and in instruction. I became a mathematics 

educator many years ago because of my love for mathematics and my wish to share it 

with students, who were typically deprived of the pleasures that I consistently 

experienced as a mathematician. Problem solving provided a way into the joys of doing 
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mathematics and the pleasures of discovery. I firmly believe that problem solving – or a 

broader conception of mathematics as sense making – still can do so, and I hope to see us 

make progress along those lines. 
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Lesh: “Do you really think your children can do this?” 

Riggs: “So far, nobody has taught them yet about what they can’t do.” 

 

Abstract: This article focuses on problem solving activities in a first grade classroom in a 
typical small community and school in Indiana.  But, the teacher and the activities in this 
class were not at all typical of what goes on in most comparable classrooms; and, the 
issues that will be addressed are relevant and important for students from kindergarten 
through college.  Can children really solve problems that involve concepts (or skills) that 
they have not yet been taught?  Can children really create important mathematical 
concepts on their own – without a lot of guidance from teachers?  What is the relationship 
between problem solving abilities and the mastery of skills that are widely regarded as 
being “prerequisites” to such tasks?  Can primary school children (whose toolkits of 
skills are limited) engage productively in authentic simulations of “real life” problem 
solving situations?  Can three-person teams of primary school children really work 
together collaboratively, and remain intensely engaged, on problem solving activities that 
require more than an hour to complete? Are the kinds of learning and problem solving 
experiences that are recommended (for example) in the USA’s Common Core State 
Curriculum Standards really representative of the kind that even young children 
encounter beyond school in the 21st century?  … This article offers an existence proof 
showing why our answers to these questions are: Yes. Yes. Yes. Yes. Yes. Yes. And: No.  
… Even though the evidence we present is only intended to demonstrate what’s possible, 
not what’s likely to occur under any circumstances, there is no reason to expect that the 
things that our children accomplished could not be accomplished by average ability 
children in other schools and classrooms.   
Keywords: Common core standards; elementary mathematics education; problem 
solving in elementary school; 
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Can Children Solve Problems involving Concepts they have not been Taught? 

Most people’s ordinary experiences are sufficient to convince them about the 

truth of two important assumptions about learning and problem solving.   

 First, the kinds of things that students can learn, and the kinds of problems 

that they can solve, tend to be strongly influenced by the things they already 

know and are able to do.  So, the accompanying “common sense assumption” 

is that these prerequisites must be mastered before students are expected to 

learn relevant new ideas, or solve relevant new types of problems.   And 

consequently, learning is viewed as a long step-by-step process in which 

prerequisites are checked off one at a time. 

 Second, concepts and abilities do not go from unknown to mastered in a single 

step.  They develop! And, so do associated abilities.  In fact, especially for the 

most important “big ideas” in the K-12 curriculum, development typically 

occurs over time periods of several years, and along a variety of dimensions – 

such as concrete-abstract, intuition-formalization, situated-decontextualized, 

specific-general, or increasing representational fluency, or increasing 

connectedness to other important concepts or abilities.  So, in situations which 

are meaningful and familiar to students, rapid developments often occur for 

clusters of related concepts and abilities.  And, in these contexts, students’ 

ways of thinking often integrate ideas and abilities associated with a variety of 

textbook topic areas – so that the resulting knowledge and abilities are 

organized around experiences as much as around abstractions. 
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For readers who are familiar with Vygotsky’s zones of proximal development, the 

title of this section poses a question that is clearly naïve. Learning does not occur in this 

all-or-nothing manner.   For example, in a series of projects known collectively as The 

Rational Number Project (RNP, 2011), it is well known that the “difficulty level” of a 

given task can be changed by years – simply by changing the context or the 

representational media in which problems are posed (e.g., written symbols, written 

language, diagrams or graphs, concrete models, or experience-based metaphors).  

Consequently, when students encounter a problem in which some type of mathematical 

thinking is needed, all of the relevant concepts and abilities can be expected to be at some 

intermediate stages of development – not completely unknown, yet not completely 

understood – regardless of whether these concepts or abilities have been formally taught. 

In fact, for researchers who have investigated what it means to “understand” the 

most powerful and important ideas in the elementary school curriculum, it has become 

clear that most of the “big ideas” that underlie the K-12 curriculum begin to develop in 

early years– in topic areas ranging from rational numbers and proportional reasoning 

(RNP, 2011), to measurement and geometry (e.g., Krutetskii, 1976), to statistics and 

probability (e.g., Zieffler, Garfield, delMas, & Reading, 2008), to early ideas in algebra 

(English, in press; Thompson, 1996) or calculus. In fact, in each of these domains of 

mathematical thinking, many important understandings typically begin to develop even in 

the primary grades (K-2). Such observations are reminiscent of Bruner’s claim, long ago, 

that: Any child can be taught any concept at any time – if the concept is presented in a 

form that is developmentally appropriate (Bruner, 1960).  Of course, the “if clause” in 

this quote is very significant. That is, in order for remarkable developments to occur, 
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relevant concept and abilities need to be accessible in the forms that are developmentally 

appropriate.  

For the problems that will be described in this chapter, the two primary tests of 

developmentally appropriateness are: (a) Do the children try to make sense of the 

problem using their own “real life” experiences – instead of simply trying to do what they 

believe that some authority (such as the teacher) considers to be correct (even if it doesn’t 

make sense to them)?  (b) When the children are aware of several different ways of 

thinking about a given problem, are they themselves able to assess the strengths and 

weaknesses of these alternatives – without asking their teacher or some other authority? 

When these two criteria are satisfied, children are able to go from “first-draft of thinking” 

to “Nth-draft of thinking” without interventions from an outside authority. 

When referring to “real life” sense-making abilities, it is important to emphasize 

that we are not assuming that a first grader’s “real life” interpretations of experiences are 

the same as an adult’s one.  For example, for first graders, children’s stories often engage 

their sense making abilities more than situations that an adult might consider to be a “real 

life” situation.  So, for the problems that we’ll describe in this article, the tasks were 

presented in the context of stories such as Two Headed Stickbugs, The Proper Hop (for 

Beauregard the Frog), Fussy Rug Bugs, Isabelle Talks, The Royal Scepters, or Tubby the 

Train (see Figure 1) – most of which appeared first in Scott Foresman’s longest running 

kindergarten book - written by Lesh & Nibbelink (1978).    

For our purposes in this article, some other important of “real life” characteristics 

that we tried to build into our problems include the following. (a) The product that the 

children are challenged to produce often is not just a “short answer” to a pre-
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Figure 1. The First Pages from Six Stories 

Figure 1 shows the six contexts that were used for the problems which will be 

described in this article.  Then, Figure 2 briefly describes the tasks that accompany each 

of these stories.  For each task, the children worked in groups of three; the work spaces 
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or calculus?, then the answer clearly must be: No!  It took years for some of history’s 

most brilliant mathematicians to invent these concepts.  So, average ability children 

cannot be expected to do such things during single class period? But, if the question is 

asking:  Can children use numbers to describe mathematically interesting situations in the 

mathematical “objects” involve more than simple counts of discrete objects (i.e., cardinal 

numbers), then one of the main points of this paper is that the answer to this question is: 

Yes!  For example, the six problems that we describe in this article involve using 

numbers to describe locations (coordinates, or ordinal numbers), lengths or distances (or 

other types of measurable quantities), signed quantities (negative numbers), directed 

quantities (vectors), actions (operators, transformations, functions), changing quantities 

(rates or intensive quantities), or accumulating quantities (calculus).  In particular, for the 

six stories described here: 

 Children’s responses to the Stickbug Problem often use numbers to describe 

lengths, distances, and sometimes even coordinates – if the “map” is thought 

of as a simple kind of grid. 

 Children’s responses to the Proper Hop Problem often use numbers to 

describe locations, actions (hops), number patterns, or quantities that have 

both a magnitude and a direction. 

 Children’s responses to the Fussy Rugbugs Problem often use numbers to 

describe areas or dimensions (concerning how “rugs” are aligned within 

shapes). 

 Children’s responses to the Isabel Talks Problem often use numbers to 

describe relationships between areas and perimeters, and even negative 
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numbers (because when borders are rearranged to include some new “trees” 

and other “trees” tend to be lost). 

 Children’s responses to the Royal Scepters Problem often use numbers to 

describe scaling-up, proportions, ratios, lengths, distances, shapes (e.g., 

rectangles, triangles), and sometimes angles or areas . 

 Children’s responses to the Tubby the Train Problem often use numbers to 

describe lengths, angles, and negative quantities (which occur pieces of tracks 

are inserted or deleted in order to eliminate dead ends, or in order to enlarge or 

shrink enclosed areas). 

Of course, from a child-eye view, the preceding situations are not about ordinal 

numbers, coordinates, signed numbers, vectors, operators – or areas, volumes, or 

densities.  To the children, they are simply contexts in which numbers are used to 

describe things such as: hops, measuring sticks, sticky post-it notes, straws, or paths. 

Nonetheless, because the tasks require children to externalize their thinking in forms that 

are visible to the students themselves (as well as teachers and researchers), the seeds are 

apparent for many of the most important “big ideas” that span the entire K-12 

mathematics curriculum.    

In general, what research based on models & modeling perspectives (Lesh & 

Doerr, 2003) shows that, if children clearly recognize the need for a specific kind of 

mathematical description, diagram, artifact, or tool, and if the children themselves are 

able to assess strengths and weaknesses of alternative ways of thinking, then remarkably 

young children are often able to produce impressively powerful, reusable, and shareable 

tools and artifacts in which the mathematical “objects” being described involve far more 
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than simple counts. However, even though children are able to generate such descriptions 

without guidance from adults, this claim does not imply that there is no role for teachers.  

For example, even if children succeed in developing a powerful, sharable, and reusable 

artifact or tool in response to a problem, they usually lack powerful ways to visualize 

underlying constructs, and they are not often aware of strengths and weaknesses of 

alternative ways of thinking.  Furthermore, because their results often integrate concepts 

and procedures drawn from a variety of textbook topic areas, they usually have not 

unpacked these ideas-or, expressed them using elegant language and notations. 

 

Can Teams of Primary School Children Work Collaboratively, and Remain 

Intensely Engaged, on Problem Solving Activities that Require an Hour to 

Complete? 

Lesh:  How long do you think primary school children are able to work on these kinds of 

tasks? And, what is it about such activities that stimulate sustained work from children? 

Riggs:  In general, the children worked on one modeling activity for two or three 

consecutive days for an hour or more each day.  The fourth day was reserved for sharing 

explanations of their modeling to their classmates.  Due to the cooperative nature of the 

activities, complemented by children's engagement in problem solving, the children were 

highly motivated and often requested additional time to devote to the task.  Through 

sharing, children learned to appreciate diversity in problem solving. I believe that 

introducing concepts through interesting children's stories gives the children a purpose 

for their learning; this purpose is what stimulates them to complete the task no matter the 

amount of time required or how challenging it seemed.  The children viewed learning as 
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something they wanted to do instead of something they were required to do; modeling 

activities provide that motivation. The activities were designed to open and close within a 

week.  One reason for this policy was because class time is precious.  These stories 

served as “chunks” that children could use to organize ideas and skills related to a 

central “big idea”.  If these “chunks” got too large, the children would lose sight of the 

"big idea".  Memorable stories also help children remember what they have learned.  The 

children continued to think about the "big idea" after class - and after we moved to other 

topics.  Weeks after they had finished activities directly associated with one of our 

stories, they often referred back – saying: This is like Stickbugs, or Beauregard, or Tubby 

the Train.  Then, they would use concepts and abilities that they had developed during 

those tasks. …  So again, several smaller stories are better than one big story.   

 

Lesh:  How much and what kind of guidance did you need to provide in order for 

children to be successful for these tasks? 

Riggs:  When the children work in groups, they tend to persevere when they otherwise 

might have given up. But also, in every one of our activities, children worked together to 

build some concrete tools or artifacts – such as pathways, fences, villages, maps, or 

scaled-up houses.  So, as long as they clearly understood what was needed and why, and 

as long as they were able to test their thinking without asking me “Am I done?” or “Is 

this right?”, they were able to move from first-draft thinking to second and third-draft 

thinking without much guidance from me.  

Self-assessment is important because, in complex activities, if children need to 

wait for their teacher’s approval at each step, then things move too slowly, and young 
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What is the Relationship between Problem Solving & the Development of 

“Prerequisite” Concepts & Skills?   

Lesh:  This project was not an experiment that treated your children like guinea pigs in a 

laboratory.  It was simply a joint effort that you and our research team decided to 

provide the best kind of learning experiences for your children. Yet you, like most 

teachers, administrators, and schools on these days, are being held accountable for 

learning gains which are measured by standardized tests which (I believe) don’t measure 

much beyond low-level skills.  So, even though we didn’t have any experimental “control 

group”, how do you think your students will perform, compared to others, on 

standardized tests that are relevant to you and others in your school? 

Riggs:  I believe that my students will perform as well, if not better, on standardized 

assessments after using the model eliciting activities.    Given that the children learn to 

problem solve in ways that make sense to them, and they can see their results from the 

models created, the model eliciting activities provided a knowledge base where 

information can be retrieved and applied as needed.  The students' ability to apply what 

they had learned became evident when they would remember the "big idea" weeks after 

we had finished the activity, and when they would apply it to situations in their own lives. 

One example: Three weeks after completing The Proper Hop, a student stated that living 

in an apartment complex is like living in Sugar Swamp - there are a lot of lily pads.  After 

helping Beauregard to find the best lily pad closest to his friends, this student understood 

why her Mom didn't want her to walk all the way over to the other side of the complex to 

visit a friend.  It was too far away; it was like Beauregard hopping 20 hops.  She said 

that her Mom allowed her to go next door to visit a friend; for Beauregard, it would only 
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be one or two hops.  This student also wished she could pick the location of her 

apartment to be close to her friends - just like she helped Beauregard find his home in 

The Proper Hop.           

Ever since the seminal work of William Brownell (1970), it has been known that, 

even if we only care about skill-level knowledge, “varied practice” is far more effective 

than “routine practice” (or drills that are repeated again and again).  Brownell identified 

three kinds of varied practice.  The first type involves mixed activities in which attention 

shifts among several skills – rather than emphasizing just one.  This is effective partly 

because “understanding” involves more than knowing how to do something; it also 

involves knowing when to do it.   The second type of varied practice involves practicing 

skills in a full range of situations in which they are intended to be useful.   This is 

effective partly because useful skills need to be flexible, not rigid.  And, the third type of 

varied practice involves using skills during complex activities – similar to the way 

excellent chefs not only know how to use each of the tools sold in chef’s catalogues, but 

they also know how to orchestrate the use of these tools during the development of 

complex meals. 

 

Can Primary School Children Engage Productively in Authentic Simulations of 

“Real Lift” Problem Solving Situations?   

According to the models & modeling perspectives that underlie our work (Lesh & 

Doerr, 2003), we reject the notion that children learn, or learn to be effective problem 

solvers, by first learning concepts and skills, and then learning to use them in meaningful 

“real life situations.”  By far the most important characteristic of the models & modeling 
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perspectives that distinguish our work from traditional research on problem solving is the 

recognition that – regardless of whether investigations focus on decision making by 

medical doctors, business managers, chess players, or others in real life decision-makers - 

in virtually every field where learning scientists have investigated differences between 

ordinary and exceptionally productive people, it has become clear that exceptionally 

productive people not only do things differently, but they also see (or interpret) things 

differently. Furthermore, when problem solvers interpret situations they don’t simply 

engage models that are completely mathematical or logical in nature.  Their 

interpretations also tend to include feelings, values, dispositions, and a variety of 

metacognitive functions.  But, instead of mastering these other higher-order functions 

separately, and then attaching them to mathematical models, research on models and 

modeling shows that they develop as integral parts of the relevant interpretation systems 

(Lesh, Carmona & Moore, 2010). 

 Traditionally, problem solving has been characterized as a process of (a) 

getting from givens to goals when the path is not obvious, and (b) putting 

together previously learned concepts, facts, and skills in some new (to the 

problem solver) way to solve problems at hand.  But, when attention shifts 

toward models & modeling, problematic situations are goal directed activities 

in which adaptations need to be made in existing ways of thinking about 

givens, goals, and possible solution steps. So, modeling is treated as a way of 

creating mathematics (Lesh & Caylor, 2007); and, modeling and concept 

development are expected to be highly interdependent and mutually 

supportive activities – especially for young children.  
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 Traditionally, problem solving strategies and metacognitive functions have 

been specified as lists of condition-action rules – and have been thought of as 

providing answers to the question: What should I do when I’m stuck (i.e. 

when I am not aware of any productive ways of thinking about the problem at 

hand).   But, when attention shifts toward models & modeling, the goal of 

metacognitive processes is to help problem solvers develop beyond their 

current ways of interpreting the situations, rather than helping them identify 

“next steps” within current ways of thinking. 

 Traditionally, problem solving in mathematics education has focused on 

individual students working without tools on textbook word problems.  But, 

because research on models and modeling tends to focus on simulations of 

“real life” situations, problem solvers often are diverse teams of students each 

of whom are likely to have access to a variety of specialized technical tools 

and resources. So, capabilities that become important include: modularization, 

communication, explanation, and documentation - as well as planning, 

monitoring, and assessment – all of which tend to be overlooked in the 

traditional mathematics education problem solving literature; and, all of which 

emphasize modern socio-cultural perspectives on learning. 

Because model development activities are, above all, research sites for directly 

observing the development of interpretation systems that involve some of the most 

important aspects of what it means to “understand” many of the most important concepts 

and “big ideas” in mathematics education, research on models and modeling has led to 

new views about: (a) how the modeling cycles that students go through during one 60-
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minutes model-eliciting activity often are remarkably similar to developmental sequences 

that Piagetian psychologists have identified during timespans of several years based on 

normal everyday experiences, (b) how average ability students often develop (locally) 

through several Piagetian stages during single 60-minutes problem solving episodes, (c) 

how students’ final-draft solutions  often embody mathematical thinking that is far more 

sophisticated than traditional curriculum materials ever dared to suggest they could be 

taught, (d) how student solutions which are expressed in the form of sharable and 

reusable tools often enable students to  exhibit extraordinary abilities to remember and 

transfer their tools to new situations, (e) how the processes that enable students to move 

from one model to another seldom look anything like currently touted “learning 

trajectories” which describe learning and problem solving using the metaphor of a point 

moving along a path, (f) how the tools and underlying models which students produce in 

“real life” model development often integrate concepts and abilities associated with a 

variety of textbook topic areas, (g) how students’ early interpretations often involved 

collections of partial interpretations – which tend to be both poorly differentiated and 

poorly integrated, (h) how later interpretations tend to notice patterns of information, 

rather than the kind of pieces of information that tend to dominate earlier interpretations, 

(i) how model development tends to involve gradually sorting out and integrating several 

earlier interpretations, (j) how model development often occurs along a variety of 

interacting dimensions – such as concrete-abstract, intuition-formalization, specific-

general, global-analytic, and so on, (k) how the origins for final interpretations often can 

be traced back to several conceptual grandparents, and (l) how final models tend to 

include not only systems of logical/mathematical “objects”,  relations, operations, and 
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patterns, but they also usually included dispositions, feelings, and a variety of relevant 

metacognitive functions.  

 

Are the Learning & Problem Solving Experiences Recommended (for example) in 

the USA’s Common Core State Curriculum Standards Representative of Those 

Children Encounter beyond School in the 21st Century? 

For mathematics in the primary school (K-2), the main themes of the CCSC 

Standards are clear.  One of its laudable overall goals is to focus on deeper “conceptual” 

treatments of fewer standards.  Another is to emphasize research-based learning 

progressions about how students’ mathematical knowledge, skill, and understanding 

develop over time.  And, another is to treat mathematical understanding and procedural 

skill as being equally important.  

 What do the CCSC Standards mean by focusing on deep treatments of a small 

number of “big ideas”?  They say: Mathematics experiences in early 

childhood settings should concentrate on (1) number (which includes whole 

number, operations, and relations) and (2) geometry, spatial relations, and 

measurement, with more mathematics learning time devoted to number than 

to other topics.   

 What does mathematical understanding look like? They say: One hallmark of 

mathematical understanding is the ability to justify, in a way appropriate to 

the student’s mathematical maturity, why a particular mathematical statement 

is true or where a mathematical rule comes from. 
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 Modeling with mathematics is mentioned in only one small paragraph in these 

standards. And, what do the CCSC Standards mean by “modeling with 

mathematics”? They say: Mathematically proficient students can apply the 

mathematics they know to solve problems arising in everyday life, society, and 

the workplace. 

 The goal of describing and comparing measurable attributes is mentioned in 

precisely one sentence in the CCSC Standards for the primary grades.  But, 

this sentence is overwhelmed with statements and examples focusing on 

number operations, and on counts of discrete objects in sets.   

The preceding prejudiced portray of a view of mathematics, learning, and 

modeling that is extremely different than the one described briefly in this article.  The 

CCSC preoccupation with counts is not focused.  It is narrow.  And, it is not at all 

consistent with the kinds of situations that even young children encounter where numbers 

and arithmetic outside their school classrooms.   Similarly, the CCSC’s notion of what it 

means to “understand” important concepts and processes completely overlooks the 

development of powerful sense-making systems - that is, models for describing 

(quantifying, dimensionalizing, coordinatizing, or in general: mathematizing) situations 

in forms so that the concepts and procedures that they profess to emphasize will be useful 

beyond mathematics classrooms (Lesh & Sriraman, 2010; Lesh, Sriraman & English, 

2013). 

Similarly, the notion of modeling in the CCSC as “applying mathematics that they 

know to solve problems arising in everyday life” is not at all what we have described in 

this paper – where 1st grade children learned to actively develop impressively 
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sophisticated descriptions of meaningful situations – similar to those that occur beyond 

school classrooms.  And finally, the CCSC’s notion of “research progressions” 

completely ignores the large literature on situated cognition – where knowledge is 

recognized as being organized around mathematically rich experiences (like our stories) 

as much as around the kind of decontextualized abstractions that the CCSC Standards 

continues to emphasize in the examples and detailed descriptions of curriculum goals that 

are given. Why is this oversight so important?  One reason is because most “learning 

progressions” of the type that the CCSC appears to have in mind envision long strings of 

prerequisites as being necessary to “master” before children can proceed to more 

important milestones.  So, learning is thought of as a long and arduous process – which 

looks nothing like the rapid local developments that we describe in this article.    

Certainly “real life” situations where number and arithmetic concepts are useful 

involve many kinds of mathematical “objects” including beyond counts.  Examples 

include locations, actions, weights, likelihoods, and so on.  But, unlike the word problems 

that fill K-12 textbooks, which can be characterized as situations described by a single 

rule (or function) going in one direction.  “Real life” situations often involve several 

“actors” or several functions – so that feedback loops and 2nd-order effects are important, 

and where issues such as maximization, minimization, or stabilization occur regularly.  

For example, in the story-based problems that we have emphasized here, most of them 

involved several interacting arithmetic operations, as well as issues such as minimization 

or maximization. 

Most of all, this article is intended to portray mathematical model development as 

an important aspect of mathematical “understanding” that is unabashedly optimistic about 
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the level of mathematical thinking that is accessible – even to primary school children, 

and to students of average-ability as measured on standardized achievement tests.    
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Prospective Teachers’ Interactive Visualization and Affect in 
Mathematical Problem-Solving 
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Abstract: Research on technology-assisted teaching and learning has identified several 
families of factors that contribute to the effective integration of such tools. Focusing on 
one such family, affective factors, this article reports on a qualitative study of 30 
prospective secondary school mathematics teachers designed to acquire insight into the 
affect associated with the visualization of geometric loci using GeoGebra. Affect as a 
representational system was the approach adopted to gain insight into how the use of 
dynamic geometry applications impacted students’ affective pathways. The data suggests 
that affect is related to motivation through goals and self-concept. Basic instrumental 
knowledge and the application of modeling to generate interactive images, along with the 
use of analogical visualization, played a role in local affect and prospective teachers’ use 
of visualization. 
 
Keywords: problem-solving strategies, visual thinking, interactive learning, drawing, 
diagrams, teacher training, visual representations, reasoning, GeoGebra. 
 

1. Experimental conditions and research questions addressed  

At present, the predominant lines of research on problem-solving aim to identify 

underlying assumptions and critical issues, and raise questions about the acquisition of 

problem-solving strategies, metacognition, and beliefs and dispositions associated with 

problem-solvers’ affect and development (Schoenfeld, 1992; Lester and Kehle, 2003). 

Problem-solving expertise is assumed to evolve multi-dimensionally (mathematically, 

metacognitively, affectively) and involve the holistic co-development of content, 

problem-solving strategies, higher-order thinking and affect, all to varying degrees 

(English & Sriraman, 2010). This expertise must, however, be set in a specific context. 

                                                 
1 igomezchacon@mat.ucm.es 
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Future research should therefore address the question of how prospective teachers’ 

expertise can be holistically developed. 

The research described here was conducted with a group of 30 Spanish 

mathematics undergraduates. These future teachers took courses in advanced 

mathematics in differential and Riemannian geometry, but worked very little with the 

classical geometry they would later be teaching. They were accustomed to solving 

mathematical problems with specific software, mainly in areas such as symbolic 

calculation or dynamic geometry, but were not necessarily prepared to use these tools as 

future teachers. Research on teaching in technological contexts (Tapan, 2006) has shown 

that students are un- or ill-acquainted with mathematics teaching, i.e., they are unaware 

of how to convey mathematical notions in classroom environments and find it difficult to 

use software in learning situations. Hence the need to specifically include the classroom 

use of software in teacher training. 

This paper addresses certain understudied areas in problem-solving such as 

visualization and affect, with a view to developing discipline awareness and integrating 

crucial elements for mathematics education in teacher training. As defined by Mason 

(1998), teachers’ professional development is regarded here as development of attention 

and awareness. The teacher’s role is to create conditions in which students’ attention 

shifts to events and facts of which they were previously unaware. Viewed in those terms, 

teaching itself can be seen as a path for personal development. 

The main aim of this essay is to explain that in a dynamic geometry environment, 

visualization is related to the viewer’s affective state. The construction and use of 

imagery of any kind in mathematical problem-solving constitute a research challenge 
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because of the difficulty of identifying these processes in the individual. The visual 

imagery used in mathematics is often personal in nature, related not only to conceptual 

knowledge and belief systems, but laden with affect (Goldin, 2000; Gómez-Chacón, 

2000b; Presmeg, 1997). These very personal aspects are what may enhance or constrain 

mathematical problem-solving (Aspinwall, Shaw, and Presmeg, 1997; Presmeg, 1997), 

however, and as such should be analyzed, especially in technological contexts.  

Gianquinto (2007) and Rodd (2010) contend that visualization is “epistemic and 

emotional”. Giaquinto suggests that visual experience and imagining can trigger belief-

forming dispositions leading to the acquisition of geometrical beliefs that constitute 

knowledge. According to Rodd (2010), the nature of belief-forming dispositions is not 

confined to perception, but incorporates the results of affect (or emotion-perception 

relationships). Hence, the belief-forming dispositions that underlie geometric 

visualization are affect-laden. 

The present study on teaching geometric loci using GeoGebra forms part of a 

broader project involving the design, development and implementation of multimedia 

learning scenarios for mathematics students and teachers2. The solution of geometric 

locus problems using GeoGebra was chosen as the object of study because a review of 

the literature revealed that very little research has been conducted on teaching that aspect 

of geometry. A recent paper (Botana, 2002) on computational geometry reviewed current 

approaches to the generation of geometric loci with dynamic geometry systems and 

compared computerized algebraic systems to dynamic symbolic objects. However, it did 

not address the educational add-ons needed by teachers. Several authors have compared 

                                                 
2 Complutense University of Madrid Research Vice-Presidency Projects PIMCD-UCM-463-2007, PIMCD-
UCM-200-2009; and PIMCD-UCM-115-2010  
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the visual (and sometimes misleading) solutions generated by dynamic geometry systems 

to the exact solutions obtained using symbolic computational tools (Botana, Abánades 

and Escribano, 2011). The approximate solution problem affects all dynamic geometry 

systems, due to the numerical nature of the calculations performed. The GeoGebra team 

has been working on improving this feature as part of the GSoC3 project. In the 

meantime, however, external tools must be used to obtain accurate solutions4.  

This article specifically explores the role of technological environments in the 

development of students’ competence as geometricians and future teachers. More 

precisely, it focuses on the relationship between technology and visual thinking in 

problem-solving, seeking to build an understanding about the affect (emotions, values 

and beliefs) associated with visualization processes in geometric loci using GeoGebra. 

The questions posed are: how does affect impact visual thinking through dynamic 

geometry software (GeoGebra)? and how does interactive visualization impact affect in 

learning mathematics? The difficulties encountered in training students to build strategic 

knowledge for the classroom use of technology, which weaken personal problem-solving, 

are also explained. 

The rest of the paper is organized as follows. A description of the scientific theory 

underlying the research is followed by a presentation of the training and research 

methodology used. A subsequent section discusses the results of all the analyses, 

including tentative answers to the questions formulated above. A final section addresses 

the preliminary conclusions of the study and suggestions for future research. 

2. Theoretical considerations 

                                                 
3 http://www.geogebra.org/trac/wiki/Gsoc2010 
4 http://nash.sip.ucm.es/LAD/LADucation4ggb/ 
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Different theoretical approaches to the analysis of visualization and representation 

have been adopted in mathematics education research. In this study the analysis of the 

psychological (cognitive and affective) processes involved in working with (internal and 

external) representations when reasoning and solving problems requires a holistic 

definition of the term visualization. Arcavi’s proposal (Arcavi, 2003: 217) has 

consequently been adopted: “the ability, the process and the product of creation, 

interpretation, use of and reflection upon pictures, images, diagrams, in our minds, on 

paper or with technological tools, with the purpose of depicting and communicating 

information, thinking about and developing previously unknown ideas and advancing 

understandings”. 

Analysis of those two complementary elements, image typology and use of 

visualization, was conducted as per Presmeg (2006) and Guzmán (2002). In Presmeg’s 

approach, images are described both as functional distinctions between types of imagery 

and as products (concrete imagery (“picture in the mind”), kinesthetic imagery, dynamic 

imagery, memory images of formula, pattern imagery). In Guzman they are categorized 

from the standpoint of conceptualization, the use of visualization as a reference and its 

role in mathematization, and the heuristic function of images in problem-solving 

(isomorphic visualization, homeomorphic visualization, analogical visualization and 

diagrammatic visualization5). This final category was the basis adopted in this paper for 

addressing the handling of tools in problem-solving and research and the precise 

                                                 
5 Isomorphic visualization: the objects may correspond ”exactly” to the representations. Homeomorphic 
visualization: inter-relationships among some of the elements afford an acceptable simulation of the 
relationships between abstract objects They serve as a guide for the imagination. Analogical visualization: 
the objects at hand are replaced by that are analogously inter-related. Modeling process. Diagrammatic 
visualization: mental objects and their inter-relationships in connection with aspects of interest are merely 
represented by diagrams that constitute a useful aid to thinking processes. (Guzmán, 2002). 
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distinction between the iconic and heuristic function of images (Duval, 1999; Souto and 

Gómez-Chacón, 2011) to analyze students’ performance. The heuristic function was 

found to be related to visual methods (Presmeg, 1985) and cognitive aspects as part of 

visualization: the effect of basic knowledge, the processes involved in reasoning 

mediated by geometrical and spatial concepts and the role of imagery based on analogical 

visualization that connects two domains of experience and helps in the modeling process. 

The reference framework used to study affective processes has been described by 

a number of authors (DeBellis and Goldin, 1997 & 2006; Goldin, 2000; Gómez-Chacón, 

2000 and 2011), who suggest that local affect and meta-affect (affect about affect) are 

also intricately involved in mathematical thinking. Goldin (2000: 211) contends that 

affect has a representational function and that the affective pathway exchanges 

information with cognitive systems. According to Goldin, the potential for affective 

pathways are at least in part built into the individual. Both these claims were 

substantiated by the present data. For these reasons, while social and cultural conditions 

are discussed, the focus is on the individual and any local or global affect evinced in 

mathematical problem-solving in the classroom or by interviewees. This aspect of 

students’ problem-solving was researched in terms of the model summarized in Figure 1 

and used in prior studies (Goldin, 2000: 213; Gómez-Chacón, 2000b: 109-130; Presmeg 

and Banderas-Cañas, 2001: 292), but adapted to technological environments. 

Affective pathway 1 (enabling problem-solving): curiosity →puzzlement→ bewilderment 
→encouragement→ pleasure →elation →satisfaction →global structures of affect 
(specific representational schemata, general self-concept structures, values and beliefs) 

Affective pathway 2 (constraining or hindering problem-solving): curiosity → puzzlement 
→ bewilderment → frustration → anxiety → fear/despair → global structures of affect 
(general self-concept structures, hate and rejection of mathematics and technology-aided 
mathematics) 



  TME, vol9, nos.1&2, p.67  
 

 
 

Figure 1. Emotions and meta-affective aspects in problem-solving 

This idealized model illustrates how local affect might influence the heuristic 

applied by a problem solver. This model was used in individual case studies because it 

provides insight into how visual processes, emotions and cognitive strategies interact. It 

also helps detect mental blocks and emotional instability where confusion and perceived 

threat are significant, generating high anxiety levels, and therefore conditioning visual 

thinking and attitudes. Here, emotions are not mere concomitants of cognition, but are 

intertwined with and inseparable from it. Most importantly, they are bound up with the 

individual’s self-image and self-concept and the global affective dimension where 

purpose, beliefs and goals have a substantial impact.  

3. Training and the research methodology used  

The qualitative research methodology used consisted of observation during 

participation in student training and output analysis sessions as well as semi-structured 

interviews (video-recording). The procedure used in data collection was student problem-

solving, along with two questionnaires: one on beliefs and emotions about visual 

reasoning and the other on emotions and technology (one was filled in at the beginning of 

the study and the other after each problem was solved). All screen and audio activity on 

the students’ computers was recorded with CamStudio software, with which video-based 

information on problem-solving with GeoGebra could be generated. Consequently, at 

least four data sources were available for each student. 

Six non-routine geometric locus problems were posed, to be solved using 

GeoGebra during the training session. Most of the problems were posed on an analytical 

register (Table 1: for a fuller description see Gómez-Chacón and Escribano, 2011). 
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Finding the solutions to the problems called for following a sequence of visualization, 

technical, deductive and analytical steps.  

Table 1: Geometric locus problems 

PROBLEM  

Problem 1: find the equation for the 
locus formed by the barycenter of a 
triangle ABC, where A = (0, 4), B = (4, 
0) and C is a point on circle x² + y² + 4x 
= 0. 

Level: basic 
Geometric locus: the wording of the 
problem determines the steps to be 
followed.  

Problem 2: assume a variable line r that 
cuts through the origin O. Take point P 
to be the point where line r intersects 
with line Y=3. Draw line AP from point 
A = (3,0), and the line perpendicular to 
AP, s. Find the locus of the intersection 
points Q between lines r and s, when r 
is shifted.  

Level: medium 
Geometric locus: in this problem, the 
difficulty is to correctly define a 
variable line. That done, the rest is 
fairly straightforward. The instructions 
for using GeoGebra are stated explicitly 
in the problem.  

Problem 3: assume a triangle ABC and 
a point P. Project P on the sides of the 
triangle: Q1, Q2, Q3. Are Q1, Q2 and 
Q3 on the same line? Define the locus 
for points P when Q1, Q2 and Q3 are 
aligned. 

Level: medium – advanced  
Geometric locus: the locus cannot be 
drawn with the “locus” tool in 
GeoGebra, because it is non-parametric. 
There is no mover point.  
 

Problem 4: the top of a 5-meter ladder 
rests against a vertical wall, and the 
bottom on the ground. Define the locus 
generated by midpoint M of the ladder 
when it slips and falls to the ground. 
Define the locus for any other point on 
the ladder. 

Level: medium – advanced  
Geometric locus: the problem does not 
give explicit instructions on the steps to 
follow. The situation is realistic and 
readily understood, but translation to 
GeoGebra is not obvious. An ancillary 
object is needed.  

Problem 5: find the locus of points such 
that the ratio of their distances to points 
A = (2, -3) and B = (3, -2) is 5/3. 
Identify the geometric object formed. 

Level: Advanced 
Geometric locus: the problem is simple 
using paper and pencil. The difficulty 
lies in expressing “distance” in 
GeoGebra. 

Problem 6: find the equation for the 
locus of point P such that the sum of the 
distances to the axes equals the square 
of the distance to the origin. Identify the 
geometric object formed. 

Level: Advanced 
Geometric locus: the problem is simple 
using paper and pencil. The difficulty 
lies in expressing “distance” in 
GeoGebra. 
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Geometric locus training was conducted in three two-hour sessions. Prior to the 

exercise, the students attended several sessions on how to use GeoGebra software, and 

were asked to solve problems involving geometric constructions. 

In the two first sessions, the students were required to solve the problems 

individually in accordance with a proposed problem-solving procedure that included the 

steps involved, an explanation of the difficulties that might arise, and a comparison of 

paper and pencil and computer approaches to solving the problems. Students were also 

asked to describe and record their emotions, feelings and mental blocks when solving 

problems.  

The third session was devoted to common approaches and the difficulties arising 

when endeavouring to solve the problems. A preliminary analysis of the results from the 

preceding sessions was available during this session.  

The problem-solving results required a more thorough study of the subjects’ 

cognitive and instrumental understanding of geometric loci. This was achieved with 

semi-structured interviews conducted with nine group volunteers. The interviews were 

divided into two parts: task-based questions about the problems, asking respondents to 

explain their methodologies and a series of questions designed to elicit emotions, visual 

and analytical reasoning, and visualization and instrumental difficulties.  

A model questionnaire proposed by Di Martino and Zan (2003) was adapted for 

this study to identify subjects’ belief systems regarding visualization and computers to 

study their global affect and determine whether the same belief can elicit different 

emotions from different individuals. In this study, students were asked to give their 

opinion of a belief and choose the emotion (like/ dislike) they associated with it, e.g.: 
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Table 2: Example of items of student questionnaire on beliefs and emotions 

‐ Visual reasoning is central to mathematical problem solving. 
‐ Visual reasoning is not central to mathematical problem solving. 
Give reasons and examples. How do you feel about having to use problem 
representations or visual imagery? 
   I like it.                                I don’t like it.                             I’m indifferent. 
…..Explain the reasons for your feelings. 
 

A second questionnaire, drawn up specifically for the present study, was 

completed at the end of each problem. The main questions were: 

Table 3: Student questionnaire on the interaction between cognition and affect 

Please answer the following questions after solving the problem: 
1. Was this problem easy or difficult? Why? 
2. What did you find most difficult? 
3. Do you usually use drawings when you solve problems? When? 
4. Were you able to visualize the problem without a drawing? 
5. Describe your emotional reactions, your feelings and specify whether you got stuck 
when doing the problem with pencil and paper or with a computer. 
6. If you had to describe the pathway of your emotional reactions to solving the problem, 
which of these routes describes you best? If you do not identify with either, please 
describe your own pathway. 

Affective pathway 1 (enabling problem-solving): curiosity →puzzlement→ bewilderment 
→encouragement→ pleasure →elation →satisfaction →global structures of affect 
(specific representational schemata, general self-concept structures, values and beliefs). 

Affective pathway 2 (constraining or hindering problem-solving): curiosity → puzzlement 
→ bewilderment → frustration → anxiety → fear/despair → global structures of affect 
(general self-concept structures, hate or rejection of mathematics and technology-aided 
mathematics). 
7. Now specify whether any of the aforementioned emotions were related to problem 
visualization or representation and the exact part of the problem concerned. 

 
The protocols and interviewee data were analyzed for their relationship to affect 

as a representational system and the aspects described in section two. 

4. Findings  

The results shown here attempt to answer the concerns formulated in the 

introduction. The affective pathways reported for each problem consistently showed: a) 
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the effect of subjects’ beliefs and goals on the preference and use of visual 

thought/knowledge in computerized environments; b) that students proved to have a poor 

command of the tools, especially the locus tool; c) that notwithstanding, beliefs on the 

potential of GeoGebra helped them maintain productive affective pathways. As a 

qualitative study, the aim here was to describe the findings in detail. Consequently, the 

cases that best exemplified the results that were consistent across the entire group (30 

students) and the nine volunteers were chosen and characterized by: gender, 

mathematical achievement, visual style, beliefs about computer learning, computer 

emotion, beliefs about visual thinking, feelings about visualization processes and global 

affect. 

4.1. Beliefs about visual reasoning and emotion typologies  

The data showed that all students believed that visual thinking is essential to 

solving mathematical problems. However, different emotions were associated with this 

belief. Initially, these emotions toward the object were: like (77%), dislike (10%), 

indifference (13%). The reasons given to justify these emotions were: a) pleasure in 

knowing that expertise can be attained (30% of the students)6; b) pleasure when progress 

is made in the schematization process and a smooth conceptual form is constructed 

(35%); c) pleasure and enjoyment afforded by the generation of in-depth learning and the 

control over that process (40%); d) pleasure and enjoyment associated with the 

entertaining and intuitive aspects of mathematical knowledge (20%); e) indifference 

about visualization (13%); f) dislike or displeasure when visualization is more 

cognitively demanding (10%). 

                                                 
6 Some students cited several reasons. 
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A similar response was received when the beliefs explored related to the use of 

dynamic geometry software as an aid to understanding and visualizing the geometric 

locus idea. All the students claimed to find it useful and 80% expressed positive emotions 

based on its reliability, speedy execution and potential to develop their intuition and 

spatial vision. They added that the tool helped them surmount mental blocks and 

enhanced their confidence and motivation. As future teachers they stressed that 

GeoGebra could favour not only visual thinking, but help maintain a productive affective 

pathway. They indicated that working with the tool induced positive beliefs towards 

mathematics itself and their own capacity and willingness to engage in mathematics 

learning (self-concept as a mathematical learner). 

 
4.2. Cognitive and instrumental difficulties: student's geometric constructions 

with GeoGebra  

This section describes the solution typologies for the six problems. 

Typology 1: static constructions (discrete treatment). In this typology, the 

students used GeoGebra as a glorified blackboard (Pea, 1985), but none of its dynamic 

features. They repeated the constructions for a number of points. To draw the geometric 

locus, they used the “5-point conic” tool. This underuse of potential appeared in problems 

1 and 4.  

Typology 2: incorrect definition of the construction. The students solved the 

problem (imprecisely), but with solutions that implied that the GeoGebra tools were 

unusable. The “locus” tool can only be used if the defining points are correctly 

determined (they may not be free points). Adopting this approach, at best the students 



  TME, vol9, nos.1&2, p.73  
 

 
 

could build a partially valid construction, but since the GeoGebra tools couldn’t be used, 

no algebraic answer was obtained.  

This typology appeared in problems 2 and 4. In problem 2, the sheaf of lines had 

to be defined by a point on an ancillary object such as a line, and not as a free point. 

Otherwise, the approximate visual solution obtained was unusable with GeoGebra. The 

students concerned were absolutely convinced that their solution was right and wholly 

unaware of any flaw in the solution. 

The difficulty in problem 4 was to define a point that was not the mid-point. The 

locus tool could not be used for a free point on the ladder.  

Typology 3: incorrect use of elements. For example, in problems 1, 2, 4 and 6, 

some students used the “slider” tool to move the “mover point”. They realized that the 

“mover point” had to be controlled, which is what the slider is for. In GeoGebra, 

however, the slider is a scalar and can't be used with the locus tool.7 

Problem 2 is a case in point. Some students defined the sheaf of lines as the lines 

passing through the origin on a point in the circle, and this point in the circle was moved 

with the slider. For example, student 9 said: “This problem is similar to the one before it. 

I built the construction while reading the problem. The hardest step was to construct the 

variable line. First, I thought I’d use a slider for the slope of the line passing through the 

origin, but that way I never got a vertical line, so I used the slider as in the preceding 

problem to build point C that revolves around the origin, and then to build the line 

connecting C and O. After that, I just followed the instructions in the problem, and I was 

very careful about the way I named the elements” (student 9, problem 2).  

                                                 
7 http://www.geogebra.org/help/docues/topics/746.html 
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Typology 4: failure to use the locus tool. Here, the construction was correct, but 

the student did not use the locus tool. To use it, the point that projects the locus (tracer) 

must be distinguished from the point that moves the construction (mover). The mover 

must be a point on an object. Some students were apparently unable to make that 

distinction, which prevented them from using the tool correctly. 

This misunderstanding arose in problems 1, 2, 3 and 4. Student 8 exemplifies this 

type of reasoning: “The first thing I had to do was find the center and radius of the circle 

to draw, to complete the square in the equation: (x +2) ² + y ² = 4. Therefore, point C is in 

a circle with a center at (-2, 0) and a radius of 2. (I didn’t actually need this because in 

GeoGebra I could enter the equation directly and draw the circle). Now, to solve the 

problem I had to know what a barycenter was. I took point C on the circle (creating an 

angular slider so the point would run along the entire circumference of the circle) and 

drew the triangle ABC. I calculated the triangle barycenter (I drew the medians as dashed 

green lines to make it easier to see that G is the barycenter). Using animation to project 

point G gave me the locus. Since the locus was a circle, I was able to solve the equation 

by finding three points, G1, G2, G3, and activating the “circle through three points” tool. 

Then I entered the data in GeoGebra: (x-0.66) 2 + y-1.34) 2 = 0.44" (student 8, problem 

1). 

4.3. Maintaining productive affective pathways 

As noted in the preceding paragraph, the belief that visual thinking is essential to 

problem-solving and that dynamic geometry systems constitute a visualization aid, 

particularly in geometric locus studies, was widely extended across the study group. That 

belief enabled students to maintain a positive self-concept as mathematics learners in a 



  TME, vol9, nos.1&2, p.75  
 

 
 

technological context and to follow positive affective pathways with respect to each 

problem, despite their negative feelings at certain stages along the way and their initial 

lack of interest in and motivation for computer-aided mathematics.  

A comparison of the affective pathways reported by the students revealed: a) 

concurrence between the use of visualization typologies and associated emotion; b) that 

the availability of and subsequent decision to use GeoGebra was often instrumental in 

maintaining a productive affective pathway. This section addresses three examples, in 

two of which the affective pathway remained productive and one in which it did not. It 

discusses the determinants for positive global affect and positive self-concept as 

mathematical learners. The key characteristics of the case studies are given in Table 4.  

Table 4: Three case studies: characteristics 

Case Gender Mathematical 
achievement 

Visual 
style 

Beliefs 
about 
computer 
learning 

Feelings 
about 
computers 

Beliefs 
about 
visual 
thinking 

Feelings 
about 
visualization   

Global 
affect 

Student 
19 

Male High 
 

Visualizing 
student 

Positive Likes Positive Likes Positive 
self-
concept 

Student  
20 

Female Average 
 

Non- 
visualizing 
student 

Positive Dislikes Positive Dislikes Positive 
self-
concept 

Student 
6 

Female Low 
 

Style not 
clear 

Positive Dislikes Positive Likes Negative 
self-
concept 

Problem 4 (Table 1) was chosen for this analysis. The students’ affective 

pathways for this problem are given in Table 5.  

Student 19 is a visualizer. In the interview he said that the pleasure he derives 

from visualization is closely associated with the mathematics view. He regards visual 

reasoning as essential to problem-solving to monitor and generate in-depth learning, to 

contribute to the intuitive dimension of knowledge and to form mental images.  
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When he was asked whether his feelings were related to visualization and 

problem-solving and to specify the parts of the problem where they were, he replied: 

“curiosity predominated in visualization. Since the problem was interesting and seemed 

to be different from the usual conic problems, I was keen on finding the solution. I had a 

major mental block when it came to representing the problem and later, as I sought a 

strategy. I was unable to define a good strategy to find the answer. I was puzzled long 

enough to leave the problem unsolved and try again later. When I visualized the problem 

in a different way, I found a strategy: construct a circle with radius 5 to represent the 

ladder and another smaller circle to represent the point in question. When I reached that 

stage, I felt confident, happy and satisfied” (student 19).  

Student 20 is a non-visualizing thinker with positive beliefs about the importance 

of visual reasoning. However, she claimed that her preference for visualization depends 

on the problem and that she normally found visualization difficult. It was easier for her to 

visualize “real life” than more theoretical problems (the difference between problems 4 

and 5, for instance). 

Her motivation and emotional reactions to the use of computers were not positive, 

although she claimed to have discovered the advantages of GeoGebra and found its 

environment friendly. She also found that working with GeoGebra afforded greater 

assurance than manual problem-solving because the solution is dynamically visible. 

Convincing trainees such as student 20 that mathematical learning is important to 

teaching their future high school students helps them keep a positive self-concept, even if 

they don’t always feel confident in problem-solving situations (Table 5). 
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Student 6’s visual thinking style could not be clearly identified. She expressed a 

belief in the importance of positive visual reasoning (“because visual reasoning helps 

gain a better understanding of the problem and consequently the solution”). This 

confirmed a liking for visualization and representation because it made it easier to 

understand the problem and she found formalization helpful. She added, however, that 

she felt insecure applying technological software to mathematics, although she believed 

GeoGebra, specifically, to be useful. In her own words, “I don’t like it and never will. I 

feel a little nervous and insecure, not because of GeoGebra but because computers 

intimidate me because I don’t understand them completely. But when I managed to 

represent the problem with GeoGebra, I felt more satisfied with the result than when I 

solved it with paper and pencil”. Although student-6’s pathway was essentially negative 

in problem 4, she persisted until she found the solution. In some cases students were 

unaware of their mistakes and misunderstandings, however. 

GeoGebra can be used to solve problem 4, although an average student cannot be 

expected to build the entire construction from scratch. The visual and instrumental 

challenge is to deploy the sliding segment, and that calls for an auxiliary circle (which 

may be concealed to simulate the effect of the ladder). The point in the ladder must be 

chosen with care to use the locus tool. Just any “point in segment” will not do; the 

“middle point” tool or a more sophisticated construction must be used.  

While none of the three students applied the “locus” command, student 19 used 

the visual power of the technology to gain a better mathematical understanding of the 

problem. That inspired a change in context which facilitated notion and property 

applications. He used GeoGebra as a genuine mathematical modeling tool. He did not 
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solve the problem with the geometric locus command, however, even though he came up 

with the right answer by modeling. A comparison of this student’s pathways in the six 

problems revealed that the interaction between visual reasoning and negative feelings 

arose around the identification of interactive representation strategies and the formulation 

of certain representations in which the identification of parametric variations plays a role. 

This student’s command of the use of concrete, kinesthetic and analogical images was 

very helpful and contributed to his global affect and his positive overall self-concept 

when engaging in computer-aided mathematics. 

An analysis of the relationship between these three students’ affective pathways 

(Table 5) and their cognitive visualization shows that visualization - negative feelings 

interactions stem essentially from students’ lack of familiarity with the tools and want of 

resources in their search for computer-transferable analogical images and their switch 

from a paper and pencil to a computer environment in their interpretation of the 

mathematical object.  

Behavior such as exhibited by student 6 denotes a need to include construction 

with locus tools in teacher training. Although no general methodology is in place, any 

geometric problem that aims to determine locus must be carefully analyzed. This calls for 

identifying three categories of geometric elements in such problems: fixed (position, 

length, dimension); mobile (position, length, variable points); and constant (length, 

dimension). 

The data also revealed the relationship between beliefs, goals and emotional 

pathways. The analysis of student 20’s responses showed that while she had no 

inclination to use computers, the importance she attached to mathematics and IT in 
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specific objectives and the structuring of her overall objective kept her on a productive 

affective pathway (McCulloch, 2011). Student 20’s solution to problem 5 (Table 1), for 

instance, constitutes a good example of a productive pathway: despite negative feelings:, 

she maintained a positive mathematical self-concept, which she reported when she 

explained her global affect. (Her self-reported pathway in problem 5 was: curiosity 

→confusion /frustration → desperation → puzzlement → satisfaction → a negative 

mathematical self-concept in terms of technology for problem 5, but a positive global 

affect regarding computer use in solving the six problems). Questions designed to elicit 

the reasons for her positive mathematical self-concept in terms of technology showed that 

objectives, purposes and beliefs were clearly interrelated. Her own words were: “I think 

that computers, not only the GeoGebra program, are an excellent tool for anyone 

studying mathematics. Nowadays, the two are closely linked: everyone who studies 

mathematics needs a computer at some point… mathematics is linked to computers and 

specifically to software like GeoGebra (if you want to teach high school mathematics, for 

instance. I at least am trying to learn more to be a math teacher) (student 20)”. 
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Table 5: Affective pathways and visual cognitive processes reported for this problem by 

three students 

 
Problem 4 

 
COGNITIVE-EMOTIONAL PROCESS 

 
Student 19 
Own pathway 

Curiosity Reading and understanding problem 

Confusion Drawing (patterns and lines/figure) 
Analytical 

Puzzlement. 
Mental block 

(Search for mental image) (specific figure/illustration and dynamic image)

Confidence Search for mental image

Perseverance-motivation Search for mental image

Excitement and hope Physical manipulation - kinetics 
Kinesthetic learning 
Mental image Identification mathematical object 

Confidence Technological manipulation with the computer 
Representing circle radius (specific illustrations) 

Confidence, joy 

 
Interactive image generation,  
slider (analogical) 

Joy and happiness Interactive image generation,  
slider (analogical) 

Perceived beauty Specific illustration with interactivity (analogical) 

Satisfaction Analytical-visual 
Memorized formulaic typology

GLOBAL AFFECT Positive self-concept 

Student 20 
Own pathway 

Curiosity Problem reading 

Frustration Global visualization of problem 
Pictorial image 

Confusion Search for mental image 
Inability to visualize the ladder as the radius of a circle 
 

Puzzlement Search for mental image 
Dynamic  and interactive image with GeoGebra 

Stimulus, motivation Technological manipulation with the computer 
Pictorial representation with GeoGebra 

Satisfaction Pictorial representation with “trace on” GeoGebra 
Full construction from scratch 
Come up with a final solution 

GLOBAL AFFECT Positive self-concept 

   

 
Student 6 
Pathway-2 

Curiosity Problem reading 

Puzzlement Global visualization of problem 
Pictorial image 

Bewildermen Search doe an instrumental image with GeoGebra 

Frustration Computer handling skills 

Anxiety Inability to visualize the ladder as the radius of a circle and using “trace on” 

Fear/despair Needing help to find the solution 

GLOBAL AFFECT Negative self-concept 
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Conclusion, limitations and further research 

The results of this study suggest that various factors are present in conjunction 

with visual thinking. The first appears to be the study group’s belief that visual thinking 

and their goal to become teachers would be furthered by working with technology (Cobb, 

1986). The data shows that all the student teachers believed that visual thinking is 

essential to solving mathematical problems. That finding runs counter to other studies on 

visualization and mathematical ability, which reported a reluctance to visualize (e.g., 

Eisenberg, 1994). However, different emotions were associated with this belief. The 

belief about using computers and that software is a tool that contributes to overcoming 

negative feelings has an impact on motivated behavior and enhances a positive self-

concept as a mathematical learner. Despite this advantage, however, student teachers may 

still misunderstand or misinterpret and therefore misuse computer information, 

unknowingly in some cases, and surrender all authority to the computer. 

While prospective teachers resort to GeoGebra software to help maintain a 

productive affective pathway and foster visual thinking, student 20’s experience with 

problem 5 is significant, for it shows that the tool by itself is not enough. If the software 

is unable to deliver the dynamic geometric capability that students want to use for the 

concepts at hand, it is useless and may even have an adverse impact on their affective 

pathway, possibly resulting in feelings of defeat such as reported by student 20. Her 

experience provides further evidence of the importance and complexity of mathematics 

teacher training, as documented by researchers studying the issue from an instrumental 

approach (e.g., Artigue, 2002). The mere provision of tools cannot be expected to 

necessarily raise the frequency of productive affective pathways. Rather, thought needs to 
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be given to how those tools are integrated into classrooms to support the development of 

visualization skills. Some students (as in item 4.2) think of graphs as a photographic 

image of a situation due to a primarily static understanding of functional dependence. 

That might be attributed to the fact that the pointwise view of mathematical objects tends 

to prevail in the classroom, where the dynamic view is underrepresented (institutional 

dimension of visualization). 

The results of this study bring to mind the progressive modelling in visual 

thinking notion introduced by Rivera (Rivera, 2011: 270). Furthering visualization 

processes in teaching involves more than just drawing “pretty pictures”: it requires 

sequenced progression of the thought process. This in turn calls for awareness of the 

transition in dimensional modelling phases from the iconic to the symbolic and the 

change of mindset. For the problem proposed, “geometric locus”, each transition can be 

associated with mathematical explanations and symbol notation and the proficient use of 

the visual tool to reify the mathematical concept. Therefore, one question that would be 

open for research is the definition of the components of an overarching theory of 

visualization for problem-solving in technological environments where this progression is 

explicit. While this study was conducted in a classroom context, it focuses on the 

individual only, not on interaction among individuals. Future studies might profitably 

explore the role of external affect and others’ (i.e., teachers’, community’s, institution’s) 

external affective representations. Such interaction impacts meta-affect and may 

potentially either help maintain or interrupt productive affective pathways.  

Finally, as explained in the introduction, the teacher training model pursues the 

development of students’ awareness and ability to apply their knowledge in complex 
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contexts, integrating knowledge with their own attitudes and values and therefore 

developing their personal and professional behavior. From this standpoint, teacher 

training programs should adopt a more holistic approach (cognitive, didactic, technical 

and affective). The present paper aims to provide a preliminary framework to help 

teacher educators or mathematical cognitive tool designers select and analyze interaction 

techniques. A secondary aim is to encourage the design of more innovative interactive 

mathematical tools. 
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1. Introduction 

In this chapter, we focus on how new technologies can be used with young 

children to investigate mathematical ideas and concepts that would normally be 

introduced at a later age. In particular, we focus on haptic technologies that allow learners 

to touch and feel objects through force feedback in addition to visual images on a screen. 

The main purpose of this paper is to describe how these technologies can be used to 

enable young learners to construct meaning about geometric shapes and surfaces as well 

as attributes of particular mathematical constructions in multiple dimensions (particularly 

2D and 3D for purposes of this chapter). Such learning environments enable various 

forms of mediation both through the devices and software used as well as socially, as 

students work together to develop meaning and create models of complex ideas. 

We begin by describing how and why young learners in particular should be 

working in such learning environments in order to provide a rationale for our work. In 

Section 2, we provide some background on how these technologies have evolved and 

their use in other disciplines and how we have built on prior research in the use of 

dynamic geometry in mathematics education. Section 3 presents how relevant these new 

learning environments can be with some specific examples from preliminary work at the 

Kaput Center.  The section also contains some theoretical reflections on how we can 
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begin to analyze and understand how students work and construct meaning in such 

environments. Section 4 then concludes by offering some design principles for future 

research and development. 

 

How Should Young Children be Doing Mathematical Problem-Solving in the 

Future? 

We believe that the answer to this question lies in three areas that focus on the 

early introduction of mathematical ideas, the use of technology, and engagement. 

Early introduction. Several researchers have promoted the idea of introducing 

mathematical ideas earlier in the curriculum and even introducing the foundation of 

advanced mathematical thinking in the early grades (Kaput, Carraher & Blanton, 2008; 

Kaput, 1994). If not then, many children will never be exposed to important mathematics 

and engage in fruitful and relevant investigations. This can have detrimental effects 

throughout a child’s educational career, reducing their desire to want to learn 

mathematics because of its lack of relevance or inaccessible representations. 

Technology use. Technology is often not a major part of elementary school 

classroom teaching due to a lack of resources and perception of its role and use. The 

predominant form of technology use in most elementary school classrooms in the U.S. is 

PowerPoint presentations. Some researchers (Carraher & Schliemann, 2000) believe that 

the introduction of technology is not enough: 

It is important to provide a social analysis in consonance with a cognitive 
one. Because technology does not act directly on learners, but only exerts 
an influence on the social activities and contexts in which it is employed, 
introducing technology into the mathematics classroom ultimately entails 
questions such as the following: What is the teacher’s role; what are the 
students trying to achieve in the tasks … . (p. 174) 
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While we agree that these questions are important, new technologies can have a 

more participatory and collaborative role rather than be a prosthetic device to prop up 

existing pedagogical practices.  New technologies can actually re-structure interaction in 

the classroom and allow the introduction of advanced mathematical ideas through 

radically new mathematical representation systems. The interactions of teachers, students 

and technologies within a learning environment can modify and transform activity 

structures (Jonassen, 2000). 

Technological affordances can also be mathematical affordances providing a 

symbiotic link between how mathematical activity can occur. Mathematizing 

technological affordances is an important step and one we discuss in detail later. 

Engagement. By integrating activity structures with the affordances of new 

technologies, the learning environment should be simple enough to establish 

engagement—to motivate curious young minds to explore, question, and be encouraged 

to want to continue to learn. It should allow them to construct meaning in open-ended 

tasks, which have been carefully designed to have mathematical purpose. It should allow 

them to share, collaborate, and feel free to use non-scholastic language as they conduct 

their mathematical investigation.  

We take a very broad view of what is mathematical problem-solving viewing it as 

an enterprise of collaborative investigation where multiple approaches are valid. It is not 

just about solving a specific problem, which has a specific answer or application into the 

real world, but rather it is an investigation that might have multiple approaches and where 

students can make multiple observations. Also, most of our activities might best be 

described as “tasks” rather than “problems.”—that is, they are goal directed activities.  
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Students are seldom at a loss for ideas to pursue.  They are not stuck; they are not 

frustrated; and, their progress often does not fit the metaphor of moving along a single 

path that is somehow temporarily blocked.  Instead, our environments are carefully 

engineered so that students can make parallel progress along a variety of interacting 

paths. Our initial tasks involve exploring, categorizing attributes of geometric shapes or 

objects, making sense of a set of objects and constructing broad and specific meaning. 

These tasks, in a broad sense, could be described as modeling (Lesh, 2007). We will 

continue to use the phrase mathematical problem-solving throughout this chapter but in 

the spirit of the position described above.  

We have referred to new technologies, but we focus on a particular type of 

learning environment that utilizes haptic or multi-modal devices. Multiple modalities are 

used in real-world applications. We make sense of problem conditions in the world by 

using sight, touch, and hearing to name a few. Hence, in our research and development, 

we have focused on new technologies that use multiple modes of input in early 

mathematics classrooms. First, let us describe the evolution of such technologies in 

contrast to the predominance of visualization software in mathematics education. 

 

2. Background to New Technology 

Haptic literally means “ability to touch” or “ability to lay hold of” (Revesz, 1950) 

and has evolved to be an interface for users to virtually touch, push, or manipulate objects 

created and/or displayed in a visual environment (McLaughlin, Hespanha, & Sukhatme, 

2002). Recently, this has rapidly evolved to include multi-touch environments. In these 

environments, learners literally lay their hands on objects via a screen interface, 
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mathematical objects can be manipulated and resultant actions be investigated. Let us 

first examine the background of educational technology involved in dynamic visual 

mathematics before extending to haptic technologies which is the focus of this chapter. 

Traditionally, dynamic, interactive, mathematical, visual environments—

including Computer Algebra Systems such as Mathematica and Maple, as well as multi-

dimensional Graphing software such as Avitzur’s Graphing Calculator—are used to aid 

students to visualize complex surfaces in various coordinate systems and complete 

computationally intensive tasks. The Geometer’s Sketchpad® is used in classrooms 

ranging from elementary grades through to undergraduate programs to allow users to 

construct, interact and explore geometric figures and shapes, and so engage in model-

eliciting activities in various mathematical topics. But these environments are not 

responsive to users’ physical interactions apart from mouse pointing. 

The experience of visual mathematics, particularly three-dimensional 

mathematics, is often very brief for U.S. mathematics and science students.  Following a 

school curriculum of Euclidean Geometry rarely expanding to non-Euclidean geometry 

or solid geometry, there is a rapid progression in most university curriculum from three-

dimensional geometry, which is embedded in third or fourth semester Calculus courses, 

to the abstract intangibles of higher dimensional mathematics. In fact, given the very 

nature of multi-dimensional mathematics—that it can examine real life objects and 

phenomena all around us—it is interesting that such a small proportion of a student’s 

formal mathematical life is spent examining the subject. Such mathematics provides a 

vocabulary for understanding fundamental modeling equations, for example, weather, 

heat, planetary motion, waves, and later, multi-dimensional mathematics, finance, 
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epidemiology, quantum mechanics, bioinformatics and many more.  Yet, there is a 

growing emergence of technologies in the scientific workplace that apply, manipulate, 

and model three-dimensional representations  

A wide range of technologies are used in the teaching and learning of multi-

dimensional mathematics in various contexts, ranging from relatively expensive 

Computer Algebra Systems (CAS) such as Mathematica™ and Maple™ (Meel, 1998; 

Park & Travers, 1996), industrial design packages, (e.g., AutoCAD™), through to Java 

Applets freely downloadable from the WWW. During reform periods, Mathematics and 

Science departments have been encouraged to integrate CAS technology into their classes 

as it can help students with visual and conceptual problems (Zorn, 1987; 1992). As 

technology becomes more sophisticated, the opportunity cost of training time and money 

spent on learning how to use a particular software and how to successfully integrate it 

into school curriculum is sufficiently high to dissuade teachers from the investment.   

Dynamic geometry environments offer point-and-click tools to construct 

geometric objects that can be selected and dragged by mouse movements. All user-

defined mathematical relationships are preserved, thus providing environments for 

students to conjecture and generalize by clicking and dragging hotspots on the object. 

These hotspots dynamically re-draw and update information on the screen as the user 

drags the mouse, and in doing so, efficiently testing large iterations of the mathematical 

construction (Moreno & Sriraman, 2005; Moreno & Hegedus, 2009; Moreno, Hegedus & 

Kaput, 2008).  

Such environments aim to develop spatial sense and geometric reasoning by 

allowing geometric conjectures to be tested, offering “intelligent” constructivist tools that 
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constrain users to select, construct or manipulate objects that obey mathematical rules 

(Mariotti, 2003)— that are largely used in secondary and not primary schools.  

In summary, these dynamic mathematic environments are responsive to users’ 

interaction but are still more structured in their feedback and lack the expressive 

capabilities of using physical interaction and force-feedback. 

We believe that students naturally need more haptic, kinesthetic avenues through 

such the combination of dynamic visual environments and haptic technologies to explore 

the mathematics of change and variation in a more sensory environment to connect to the 

symbolic formalisms of the mathematical ideas (Nemirovsky & Borba, 2003). Change 

and variation occurs in multiple school subjects, in particular algebra, geometry and data 

analysis. In allowing students the combined affordances of multi-touch interaction, visual 

feedback and force feedback where possible, the technological environment can become 

a semiotic mediator of mathematical thinking and investigation. Young learners can have 

access to new forms of mathematical problem-solving or investigation through direct 

manipulation of mathematical objects linked to varying attributes (e.g. area).  

To this aim, we have focused on integrating two types of haptic technologies: (1) 

Sensable’s PHANTOM Omni—a force-feedback device and (2) iPad with a dynamic 

geometry application—a multi-touch/multi-input device. 

Sensable’s PHANTOM Omni® (http://www.sensable.com/haptic-phantom-

omni.htm)—hereon referred to as Omni—is a desktop haptic device with six degrees of 

freedom for input (x, y, z, pitch, roll, yaw), and three degrees of output (x, y, z). The 

Omni’s most typical operation is via a stylus-like attachment that includes two buttons 

(see Figure 1a). The Omni has a very robust community and SDK behind it. The SDK 
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manipulate mathematical objects, and offer multiple inputs to one mathematical object 

hitherto impossible on a single-input computer (mouse as pointer and selector).  

With both hardware, the technological affordances are tightly coupled with 

mathematical affordances in such that the technology offers mathematical meaningful 

tools or avenues to investigate. Hence a new form of mathematical problem-solving 

originates because of new mathematization routes. We will exemplify these affordances 

in the next section. In terms of software deployment, key representational features 

include high-resolution visualization of mathematical objects and constructions which 

can be made transparent to see their interaction with other objects, and direct 

manipulation of objects allowing users to rotate and navigate “around” objects and 

flexible notation systems to allow users to observe outputs (e.g., changing area of a 

shape) based upon their input.  

We now describe how such environments are relevant to mathematics education 

and offer examples of how they can advance mathematical investigations and inquiry. 

 

3. Relevance: Future Mathematical Problem-Solving 

Situations inside and outside of formal learning environments involve 

visualization, multi-modal investigations, using and interpreting multiple representations, 

connecting mathematical attributions and concepts to real world phenomenon, e.g., form, 

shape of objects and models (visual surfaces), features and attributes. So what is 

modeling in a problem-solving context for early learners? And is it relevant or necessary 

for early learners to be introduced to such ideas? We think it is and it goes deep into what 

a mathematical problem-solving environment is for a life-long learner. In addition, 
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making sense of the environment in a mathematical way is not just physical or visible 

(i.e., tangible) but also occurs at the nano-level. Macro images, surfaces, and objects can 

simulate phenomena, which cannot be seen or felt, e.g., cell structures. Census datasets 

cannot be understood at a macro level without a deep understanding of the micro. What 

constitutes a dataset? In a similar vein, what constitutes variation at all across 

mathematical models?  The heart of the research reported here is to establish conditions 

by which early learners can advance their mathematical inquiry at stages that are hitherto 

not required by standardized frameworks but are still complimentary. Our primary 

research question is: Can we establish learning environments by which advanced 

mathematical ideas can be more readily accessed, understood and used to solve 

problems? Such understanding is mediated through the affordances of technological 

devices and at the same time social interaction between peers. Young children can 

construct meaning through collaboration (one form of mediation) but supported and 

additionally mediated through the tools afforded to them through mathematically-

enhanced technologies.  

Holland et al. (2004) outlines the role of a mediating device: 
A typical mediating device is constructed by the assigning of meaning to 
an object or a behavior. This symbolic object or behavior is then placed in 
the environment so as to affect mental actions. (p.36) 
In our design of a learning environment integrating new technologies in 

mathematically relevant ways, we adhere to a socio-cultural perspective of learning and 

analyze the interaction of the students in terms of mathematically-relevant discourse as 

mediated by the various tools and supports available to them. The affordances of the 

technological environment are cultural devices. Children can modify the environment to 

make sense of the attributes of the geometric objects and configurations through 
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investigation and interaction with each other. Vygotsky (1980) explains how activity 

structures the social environment of interaction and the very behavioral routines of 

members of that environment. We adhere to that position in our design and observe the 

technological devices to not be the only mediating device in the learning environment but 

the interaction between the children as meaning-making becomes a collaborative 

enterprise. Both are forms of semiotic mediation and result from co-action (Moreno & 

Hegedus, 2009) between the various participants. The children guide the discussion by 

interacting with visuals on a screen, receiving visual and haptic feedback loops, which 

are iteratively discussed and compared within the group and as such the technology 

reciprocally guides the resulting investigation, decisions in how to further interact, and 

conjectures or refutations from the resulting actions. Such embodied actions of pointing, 

clicking, grabbing and dragging parts of the geometric construction also allows a 

semiotic mediation (Falcade, Laborde & Mariotti, 2007; Kozulin, 1990; Mariotti, 2000; 

Pea, 1993) between the object and the user who is trying to make sense of, or induce 

some particular attribute of the diagram or prove some theorem. 

Based upon this theoretical perspective, we present two different technologies 

from our preliminary research and development at the Kaput Center. These have been 

field tested in informal and formal learning settings. This preliminary work was 

conducted with 4th graders in a high achieving elementary school in Massachusetts. 

Omni Force-Feedback Device 

In the Omni environment, we developed an exploration activity using solids and a 

plane to explore how these objects interact—in particular, what different types of planar 

intersections can be constructed. Our environment includes crisp visuals of these objects, 
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which can be navigated by dragging and moving the stylus on the Omni so that different 

views of the objects could be explored. Through iterative design, we found that certain 

colors and use of transparency helped the young learners focus their attention and 

interpretation on the interaction and their reference to certain attributes. In addition, we 

combined the haptic affordances of the Omni to add additional feedback to the 

investigation. We found that magnetism was an important design principle to further aid 

the learners to focus their attention and aid their discovery. In magnetizing the surfaces, 

the children could lock onto the intersection of the two shapes and consider what they felt 

in conjunction with what they saw. Two examples are shown in Figures 3a and 3b. The 

first shows the planar intersection of a cube, which can result in a set of intersections 

from a point (plane resting on a vertex), a line (plane on an edge), and 3-gon to 6-gons. 

The second illustrates the planar intersection of a square based pyramid, which can result 

in a similar set of intersections up to a 5-gon. Children, in groups of 4 with one device, 

mainly explored a variety of triangles, quadrilaterals and pentagons. Such an activity is 

challenging to undergraduates and the children had no prior experience with such an 

investigation, but we discovered that their engagement in discovering various types of 

intersection was immediate and endured for almost an hour. They did have prior 

experience with 2D geometric shapes such as 3-gons to 5-gons but had only a basic 

knowledge of the attributes of these shapes. For example, they did not classify 4-gons as 

quadrilaterals but squares and rectangles. They did know how many sides each shape 

should have which gave rise to interesting discussions as they explored what they saw 

and how it contrasted with what they felt. In one investigation, the children thought they 

saw a pentagon, but on tracing around the magnetized shapes they felt a 4-sided shape 



  Hegedus 

 

(by counting edges) and concluded it was trapezoid through group discussion. This 

illustrates a classic issue of cross-modality where our vision and touch can be in conflict. 

The pseudo-3D representation on a flat screen is not sufficient, even with dynamic 

interaction tools such as rotating and navigating the objects—more feedback is necessary 

for young learners to make sense of certain specific mathematical attributes of the overall 

geometric configuration.  More work is needed in establishing activity structures that 

help students make mathematical classifications of varying shapes. For example, can 

force feedback help develop a sense of angle measure (acute, right, obtuse) in classifying 

all types of triangles? 

Figure 3a.  Planar intersection of a 

cube. 

Figure 3b.  Planar intersection of a square-

based pyramid. 

In collaboration with KCP Technologies, we developed a set of activities for use with 

SketchExplorer for the iPad, a viewer application of the widely popular Geometer’s 

Sketchpad® software. This application is available in the Apple Store. Activities were 

constructed in Sketchpad and then transferred to the iPad through email or other forms of 

file exchange. All activities are pre-configured for the children to use—as no construction 

tools are presently available in this version for the iPad. Children directly interacted with 

objects in the pre-configured activity including geometric objects (e.g., points), iterative 
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counters through flicking, or buttons that had been configured to perform a set of 

operations (e.g., reflection of an image). Two examples are illustrated below. The first 

(Figure 4a) allows students to make successive attempts at translating a pre-image onto 

its pre-destined image (i.e., it has been fixed). They interact by moving the reflection line 

and pressing the reflect button. This activity calls for two reflections to make one 

translation. We found that all children in our preliminary field work in 4th grade 

classrooms eventually discovered how to complete this activity through a variety of 

methods, and develop an understanding of the relationship between reflections and 

translations.  

The second activity (Figure 4b) maximizes the affordance of multi-touch in a 

mathematical way. Point 1 can be moved laterally and Point 2 vertically (they are 

constrained to move along two perpendicular lines that have been hidden). The output of 

these movements is a blob. This blob will simultaneously move in the directions of the 

two input Points 1 and 2. The size of the blob can be changed by moving Point H along a 

slider and the color can be changed by moving a point across the spectrum. In this 

activity, we asked students to make the blob trace a circle. This was a rich mathematical 

activity in that two inputs can make one output and many of the children in our 

preliminary field work discovered this idea. More formally, the construction of a circle is 

parameterized with two perpendicular actions. Again, this activity was extremely 

engaging, especially when we added the time to establish a competition of who can make 

the best circle in the least amount of time. Here, haptics is in the form of multi-touch and 

can be done by one child (multiple fingers) or single-touch by multiple children. We 
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4. Future Design Principles 

Technological affordances should become mathematical affordances and it is in 

the mathematization of technological affordances that meaningful integration of new 

multi-modal learning environments can be developed. We conclude with a set of design 

principles that have evolved from our preliminary work, introduced in this paper, that 

have the potential to profoundly affect teaching and student learning in the early grades.   

Executable Representations  

Mathematical objects and configurations should allow learners to dynamically 

manipulate and execute operations on the representations in the learning environment. 

Instead of dealing with static objects or computational outputs, representations that are 

flexible allow young learners to adapt the configuration and test out their conjectures in 

an iterative manner. 

Co-action 

The learner and learning environment should be collaborative. In dealing with 

flexible and executable representations, the actions of the learner can guide the 

environment (re-configure representations) and be guided by the resulting actions of the 

learning environment.  

Navigation 

The integration of dynamic visuals with meaningful haptic feedback forms should 

allow the learner to navigate the various attributes of the mathematical configuration and 

construct meaning. 
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Manipulation and Interaction 

Objects in such learning environments should be manipulable, and deformed into 

a wide (if not infinite) set of similar objects, e.g., recall our triangle-area activity earlier, 

in such a setup all triangles can be configured through direct manipulation.  

Variance/Invariance 

Understanding how quantities vary or not under certain interactions allows a large 

wealth of mathematics to be explored. In addition to annotations such as measurement, 

linking variation to force feedback allows meaningful feedback to help guide the learner 

to make sense of important features, co-varying relationships or invariance. 

Mathematically Meaningful Shape & Attributes 

We naturally use touch to explore the composition of objects in nature as well as 

varying attributes. In addition to shape, form and texture, haptic feedback can be linked 

to attributes to aid the learner in their investigation.  

Magnetism 

A natural force is magnetism and this can be used to help learners focus on 

particular features or relationships between geometric shapes and surfaces. Some objects, 

or features of objects (where there is a particular mathematically-meaningful interest) can 

be magnetized and all other attributes de-magnetized. 

Pulse/Vibration 

Pulse in the form of vibro-tactile feedback or oscillating devices (such as the 

Omni) can similarly aid learners to focus their attention on certain parts of the activity, or 

offer some form of numerical feedback. For example, the frequency and amplitude of the 

pulse/vibration can be regulated to vary with some quantity. 
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Construction 

Building on the affordances of dynamic geometry, allowing learners to use visual 

and haptic tools to construct mathematical configurations can help learners to make sense 

of what objects relate to each other (e.g., co-varying quantities) and communicate with 

others their understanding or production of a mathematical model. 

Aggregation 

Learning environments often have the affordance of wireless connectivity. 

Constructions, or evolving discoveries within the learning environment can be easily 

shared across networks as part of larger models to be aggregated on another computer, or 

to be contrasted with the work of other students working on the same project. Consider 

transferring a haptic force with a visual across a network where others can “feel” what 

you have felt. 

We hope that these principles and our preliminary work provide ground-breaking 

insights into effective generative activity design by future researchers and developers in 

the future. 
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Cognitive processes developed by students when solving mathematical 
problems within technological environments 

  
Fernando Barrera-Mora & Aarón Reyes-Rodríguez 

Universidad Autónoma del Estado de Hidalgo 
Abstract: In this paper we document and discuss how the use of digital technologies in 
problem solving activities can help students to develop mathematical competences; 
particularly, we analyze the characteristics of reasoning that students develop as a result 
of using Cabri Geometry software in problem solving. We argue that the dynamical 
nature of representations constructed with Cabri, and the availability of measure tools 
integrated to it are important elements that enhance students’ ability to think 
mathematically and foster the implementation of several heuristic strategies in problem 
solving processes.  
 
Keywords: Problem solving, digital technologies, mathematical thinking. 
 

 

Introduction 

Mathematical problem solving has been widely recognized as a framework to 

analyze learning mathematical processes in which it plays dual relevant roles. On one 

side, it guides performing research in mathematics education (Schoenfeld, 1985) and on 

the other hand, it supports the development of curricular proposals (NCTM, 2000). In 

learning approaches, based on problem solving, it is considered that students construct 

mathematical knowledge by solving problems (Harel, 1994) in a community that fosters 

development of an inquisitive attitude. Students' participation in a community of practice 

has been recognized as a fundamental element of what constitutes mathematical thinking 

(Schoenfeld, 1992; Santos-Trigo, 2010), since in this community they have opportunities 

to reflect on their own thought processes through listening and reflecting upon ideas of 

other members of it. 

[In a community of inquiry] participants grow into and contribute to 
continual reconstitution of the community through critical reflection; 
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inquiry is developed as one of the forms of practice within the community 
and individual identity develops through reflective inquiry. (Jaworski, 
2006, p. 202) 
 

Problem solving is an activity involving conceptualization of the discipline “as a 

set of dilemmas or problems that need to be explored and solved in terms of 

mathematical resources and strategies” (Santos-Trigo, 2007, p. 523) and that promotes 

students’ engagement in a variety of cognitive actions that can allow them to relate 

diverse mathematical concepts, facts, procedures and forms of reasoning to construct 

learning with understanding (Hiebert et al., 1997) through posing and pursuing relevant 

questions. 

In problem-solving learning approaches, students need to conceptualize the 

construction of mathematical knowledge as an activity in which they have to actively 

participate in order to identify and communicate ideas that emerge when they are 

approaching mathematical situations (Moreno-Armella & Sriraman, 2005), as well as to 

pose questions around problematic tasks that lead them to recognize relevant information 

needed to give meaning to mathematical concepts. In this line of thinking, Santos-Trigo 

(2010, p. 301) has stated that: “An overarching principle that permeates the entire 

problem-solving process is that teachers and students should transform the problem 

statement into a set of meaningful questions to be examined”. 

Some classical approaches to problem solving have identified necessary steps for 

solving problems (Polya, 1945), and central variables that influence students’ behaviors 

and ways of reasoning. For instance, Schoenfeld (1985) considers four categories of 

variables that are useful to characterize students’ mathematical performance: (i) 

resources, (ii) heuristics, (iii) control and (iv) belief systems. However, since these 
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theoretical categories were developed based on experiences carried out in paper and 

pencil environments, when using technological tools, those categories necessary have to 

be reviewed since the use of technological tools offers students new opportunities to 

discuss mathematical tasks from perspectives where visual and empirical approaches are 

widely enhanced and by doing this, students can gain a deeper understanding of 

mathematical concepts. 

Technology based tools are now used on a daily basis in fields ranging 
from the sciences to the arts and the humanities, as well as in professions 
from agriculture to business and engineering […] And, these new 
conceptual tools are more than simply new ways to carry out old 
procedures; they are radically expanding the kind of problem solving and 
decision-making situations that should be emphasized in instruction and 
assessment. (Lesh & Doerr, 2003, p. 15) 
 

Technological tools allow students experiment, observe mathematical relations, 

formulate conjectures, construct proofs, and communicate results in ways that can 

enhance and complement paper and pencil approaches, supporting mathematical learning 

by offering opportunities to expand students’ capabilities to visualize, experiment, obtain 

feedback, and consider the need to prove mathematical results (Arcavi & Hadas, 2000). 

In order to examine the potential of using particular computational tools, in terms 

of characteristics of reasoning developed by students when solving problems, and the 

type of cognitive processes performed by learners as a result of the use of these tools, in 

the international research agenda in mathematical problem solving it has been identified 

some important questions that can shed light on our understanding about the effect of 

using these tools in learning mathematics through problem solving, such as:  To what 

extent does the systematic use of technological tools help students to think 

mathematically? Which aspects of mathematical thinking can be enhanced through the 
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use of digital technologies in mathematical problem solving? What type of reasoning do 

students develop as a result of using diverse computational tools in problem solving? 

(Santos-Trigo, 2007). In this line of thinking, the aim of this paper is to identify and 

analyze how the use of computational tools could help teachers, enrolled in a master 

program in mathematics education, to propose problem solving strategies and give 

arguments to justify and validate conjectures that emerge in the course of solving 

optimization problems. 

 

Digital technologies as cognitive reorganizers 

According to Pea (1987), cognitive technologies are media that help us transcend 

some limitations of mind such as capacity for storing and processing information based 

only on biological memory. These cognitive technologies are characterized by 

externalizing the intermediate thinking products, allowing us to operate, analyze and 

reflect upon them. Furthermore, the representations that can be constructed with 

technological artifacts are dynamical and manipulable. This dynamical character of 

computational representations enable students to construct, for instance, families of 

configurations, and to establish links among diverse representations, so that when a 

representation is modified, the change is reflected immediately on the other 

representations, allowing students to interact, operate or modify the representation and its 

relations more directly than in a paper and pencil environment.  

How does the systematic use of digital technologies impact cognitive structures? 

Digital technologies can be considered as amplifiers or reorganizers of human cognition. 

The term “amplify” means doing the same things that one could do without technology, 
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but performing it in a faster or a better way, without transforming qualitatively our 

actions; for example, a calculator is an amplifier if it is used only to perform arithmetic 

computations. On the other hand, “reorganize” means doing new things that one cannot 

do without technology, or those that were not practical to do. A technological tool can be 

considered as a reorganizer if it modifies cognitive processes and allows us to establish a 

dialectical relationship among our actions, forms of thinking and tool’s functionalities, 

which affect our modes of approaching the acquisition of knowledge. 

The use of digital tools in learning activities, promotes that students pay attention 

on the structural aspects of problem solving, by facilitating the performance of routine 

procedures, opening the possibility of approaching problems which were difficult to 

discuss within paper and pencil settings, and modifying the cognitive processes that they 

develop to construct or to operate representations of mathematical objects. For instance, 

to sketch the graph of a function within a paper and pencil environment, students could 

proceed to explore and evaluate an algebraic expression, defining the function, for some 

values of the variable, then those values need to be plotted in a coordinate system, and 

finally students sketch the graph. However, graphing a function with a calculator or a 

computational tool only requires introducing in the system the algebraic expression that 

defines the function, and the software performs intermediate steps required to sketch the 

graph. That is, computational tools simulate cognitive processes that formerly were 

exclusive of human beings, attribute that Moreno-Armella and Sriraman (2005) have 

called executability. 

Although the use of computational tools offers students advantages to learn 

mathematics, technological tools by themselves are not enough for constructing learning 
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with understanding. Mathematical learning with understanding also requires developing 

an appreciation to practice genuine mathematical inquiry, and disposition to construct 

connections among diverse mathematical concepts, ideas and procedures. The ability to 

construct connections is supported by the conceptual structure of the problem solver, a 

term that we use to indicate how the problem solver’s resources are used to approach the 

examination and solution of a problem; that is, the extent in what these resources can be 

coordinated in order to articulate different concepts and results when students develop a 

mathematical activity. 

The use of technology to approach learning activities involves considering its 

impact on the principles and concepts associated with the frame that guides research or 

instructional processes. As Santos-Trigo and Barrera-Mora (2007, p. 84) have stated 

“…any conceptual framework or perspective constantly needs to be examined, refined or 

adjusted in terms of the development of the use of tools (particularly computational tools) 

that influences directly the ways students learn the discipline”. Thus, it is important to 

consider to what extent the systematic use of technology allows us to examine, test, refine 

and expand some elements of mathematical thinking considered in problem solving 

frameworks such as (i) students’ access to basic resources or knowledge, (ii) 

implementation of problem solving strategies that involves ways to represent and analyze 

the problems, (iii) the use of metacognitive strategies and, (iv) the construction of 

justifications to validate conjectures and mathematical results. 

[…] mathematical problem solving as a research and practice domain has 
evolved along the development and availability of computational tools 
and, as a result, research questions and instructional practices need to be 
examined deeply in order to characterize principles and tenets that support 
this domain. (Santos-Trigo, 2007, p. 524) 
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We argue that computational tools “incorporates a mathematical knowledge 

accessible to the learner by its use” (Mariotti, 2000, p. 37), and by doing this, several 

consequences arise. Among them, the use of technology allows that some resources 

inherent to the tool could be incorporated to students’ resources when they solve 

problems. For example, when students solve problems using computational tools, they 

need a lesser amount of explicit mathematical resources to approach a task since students 

can develop forms of reasoning based on visual and empirical approaches, enhanced by 

the tools, and therefore their mathematical conceptual structure can be extended 

incorporating to it some inherent tool’s characteristics. 

 

Methodology  

Six high school teachers (Jacob, Sophia, Daniel, Emily, Peter and Paul) 

participated in three hours-weekly problem-solving and problem-posing sessions during 

one semester. These teachers were enrolled in a master program in mathematics 

education. They had some experience in using computational tools such as Cabri-

Geometry and a hand-held calculator (Voyage 200). All teachers had completed a 

Bachelor Science degree, majoring in mathematics or engineering, and they had teaching 

experience ranging from one to five years. 

During the semester there were twenty work sessions. The first two sessions were 

employed to show teachers basic functionalities of Cabri-Geometry through the 

construction of some common geometrical figures, and to illustrate the form to 

implement several heuristic strategies such as: to consider that the problem has been 

solved, relaxing problem conditions, add auxiliary elements to geometric configurations 



  Barrera-Mora & Reyes-Rodríguez 

 

or to solve a simpler problem. The aim of these sessions was that teachers should 

comprehend that a valid construction in Cabri geometry must be based in the properties 

and relationships defining the geometrical figures, and that dynamic behavior of figures 

is based on the hierarchy of construction procedure.  

The core of the dynamics of a DGE figure, as it is realized by the dragging 
function, consists of preserving its intrinsic logic, that is, the logic of its 
construction. The elements of a figure are situated in a hierarchy of 
properties; this hierarchy is defined by the construction procedure and 
corresponds to a relationship of logical conditionality. (Drijvers, Kieran & 
Mariotti, 2009, p. 119) 

  

In the following three sessions, teachers discussed The Church View Task: A car 

is driven on a straight roadway. Aside, there is an old church and the driver wants to stop 

so that his friend (the passenger) can appreciate the facade of the church. At what 

position of the roadway should the driver stop the car, so that his friend can have the best 

view? In the process to solve this task, teachers used Cabri to construct a dynamic model 

of the situation, and developed numerical and graphical strategies to quantify and 

understand the relationship between the car’s position on the roadway, and the view of 

the church’s facade. Besides, through exploration of relationships among elements of the 

dynamic configuration, teachers transformed the original problem in an equivalent 

geometrical problem: draw a tangent circle to line l (roadway) that passes through points 

A and B (representing the church’s façade). They conjectured that tangency point of the 

circle and line l is the place where the observer gets the best view of the church (Santos-

Trigo & Reyes-Rodríguez, 2011). 

The analyzed tasks in this paper were developed within the sixth to eighth 

sessions. During the sessions, the teachers were encouraged to use Cabri Geometry and a 
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hand held calculator to solve problems involving construction of dynamic configurations. 

The teachers worked on solving problems that come from different contexts: 

mathematical, hypothetical and real world (Barrera-Mora & Santos-Trigo, 2002). The 

researchers documented how the tools helped teachers to propose strategies to solve the 

problems and give arguments to justify and validate conjectures that emerged in the 

course of the solution process. 

The didactical approach employed during the sessions involved teachers working 

in pairs and plenary discussions in which each pair of teachers communicated and 

discussed their approaches and strategies employed to solve the problems. Two 

researchers coordinated the sessions and participated as members of a community, 

encouraging the development of an inquisitive approach to perform the tasks, and 

promoting a collaborative work not only to solve the problems, but also to review and 

reflect on mathematical content and ideas that emerged during problem-solving 

processes. 

The sessions were video recorded and recordings were transcribed. Each pair of 

teachers handed in a report that included the software files. The transcripts and teachers’ 

reports constituted basic research data. The unit of analysis was the work shown during 

the sessions by pairs of teachers, however sometimes attention was focused on the work 

the entire community. The reduction of data was performed by identifying and selecting 

some chunks of the transcripts or reports, which offered information about strategies 

employed by teachers to solve the problems or forms of reasoning used to justify their 

conjectures. 
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The main tasks analyzed in this paper are three: (a) find the rectangle of 

maximum area among all rectangles of given perimeter, (b) find the rectangle of 

maximum perimeter among all rectangles of given area, (c) given a wire, split it into two 

parts; and with one of the parts construct a square and with the other, construct a circle. 

Where should you cut the wire so that the sum of the areas of the square and the circle 

will be minimal? 

 

First task  

Peter and Paul constructed a dynamic configuration in Cabri to solve the first 

problem. They drew a segment AB representing the given perimeter of the rectangle that 

they wanted to construct. Then, they obtained midpoint M of segment AB, traced segment 

MB and put a point C on segment MB. The teachers transferred measures MC and CB to 

the horizontal and vertical axes, respectively, to construct a rectangle. After that, they 

verified that the dynamic construction fulfilled the conditions of the problem (the 

perimeter of the rectangle should be equal to the length of the segment AB) measuring the 

length of the segments MC and CB, and comparing these lengths with the length of 

rectangle’s sides (Figure 1). The aim of these actions was to verify that there were no 

mistakes during the construction process, and to provide evidences that the dynamic 

construction works properly. 

Peter computed the rectangle’s area using Cabri tools, and dragged point C until 

he obtained a numerical approximation of the maximum area, conjecturing that this one is 

not attained when the rectangle is a square. His conjecture was based on numerical 

results, since apparently the maximum area is reached when the measures of the 
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rectangle’s sides are 3.42 cm and 3.29 cm. In this phase of teachers’ activity, the tool 

acted as a cognitive reorganizer since it enabled them to formulate conjectures based on 

the relationship between visual and numerical representations mediated by dragging, as 

well as to construct justifications supported and expressed via the software’s resources. 

Figure 1. Dynamical model constructed in 

Cabri Geometry. 

 

Figure 2. Algebraic procedure developed 

by Peter to obtain the problem solution. 

Peter and Paul considered necessary to take an algebraic approach in order to 

obtain the “exact” solution of the problem using calculus techniques. Peter and Paul 

denoted by x and y the base and height of the rectangle, respectively. Then, they 

represented algebraically the area A as a function of x, and differentiated this function to 

obtain the critical points and the value that maximizes the area of the rectangle (Figure 2). 

Based on this algebraic procedure, Peter and Paul were convinced that the maximum area 

is attained when the rectangle is a square, and obtained evidence that their initial 

conjectures was wrong. This conjecture was based on both, visual perception obtained by 

manipulating the dynamic configuration, and prior problem solving experiences of Peter 

with other optimization problems whose solution do not correspond to a square. For 

instance, the following problem: find the rectangle of maximum area inscribed in a 

semicircle (see bottom right corner from figure 2). 
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Peter and Paul obtained additional certainty about the correctness of the solution 

associating the geometric problem with a similar algebraic problem: maximize the 

product of two numbers whose sum is given. 

At first, I thought that the rectangle of maximum area would not be 
square, since there is a classical problem of finding the maximum area of a 
rectangle inscribed in a semicircle, and the square is not the figure with 
maximum area. After we obtained the solution x = y algebraically, the 
result of the problem became logical to me, because if the area is equal to 
xy, you can prove that the product of two numbers, whose sum is given, is 
maximum if both numbers are equal (Extracted from Peter and Paul’s 
report corresponding to the sixth session). 

  

Daniel and Emily drew the segment AB and its midpoint (C). After this, they 

placed point E between points B and C, without considering that C should move on 

segment BC. For this reason, point E can be dragged over the entire segment AB and not 

only over BC. Teachers also drew point D, symmetric to point E respect to point C, but 

this point was not used. Teachers transferred lengths EB and CE to the horizontal and 

vertical axes, respectively, to draw a rectangle (Figure 3). 

Daniel and Emily computed the rectangle’s area and transferred this value to the 

vertical axis; then employed the “Locus” tool to construct a graphic representation of the 

area function (Figure 3). The teachers were astonished to observe the graph (Figure 3), 

since they expected that it was only a portion of a parabola. The graph behavior was due 

to the way that Daniel and Emily developed the geometrical construction, since this 

rectangle does not always meet the problem’s conditions. For some positions of point E, 

rectangle’s perimeter is greater than the length of segment AB (Figure 3, right). It is 

important to notice that Daniel and Emily, unlike Peter and Paul, did not verify that their 
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geometrical model satisfied the problem conditions, although the graph they visualized 

on the screen did not correspond to what the teachers had anticipated. 

Figure 3. Dynamical model elaborated by Daniel and Emily. 

The problem solving behavior shown for this pair of teachers to approach the first 

task is representative of the activity performed by them to approach all tasks. Daniel and 

Emily had some difficulties to construct dynamic configurations that met the conditions 

of problem statement. Additionally, in this task, they did not consider relevant to use the 

resources offered by the software, such as measure tools to check the accuracy of their 

dynamical construction. However, these teachers employed the graph of the function area 

to conjecture that the maximum area is attained when the rectangle is a square, so the use 

of the tool allowed teachers to formulate conjectures, which is an important element of 

what constitutes mathematical thinking. 

Other important feature of Emily and Daniel´s problem solving behavior was that 

they showed difficulties to implement algebraic procedures to exploring solution routes, 

although, plenary presentations allowed them consider the importance to develop this 

type of strategies to prove or refute conjectures posed using the resources offered by 

Cabri. In this context, the use of a dynamic software offered teachers opportunities to 
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approach tasks with less amount of algebraic resources in relation to the requirements of 

a paper and pencil setting. 

Jacob and Sophia traced a segment AB, a point C on AB, and midpoint (M) of 

segment AC. They transferred lengths of segments MC and CB to the vertical and 

horizontal axes, respectively, and traced a rectangle based on these measures. Teachers 

verified that rectangle’s sides had the same measures as segments CB and MC, however 

they did not realize that rectangle’s perimeter is not the length of segment AB. The 

mistakes made in the constructions process led them to formulate a wrong conjecture: the 

base of the rectangle of maximum area must be twice its height (Figure 4). 

 

Figure 4. Dynamic model elaborated by Sophia and Jacob. 

Comments 

The results of this task show that, in general, Cabri acted as a reorganizer, since it 

allowed teachers to develop procedures to approach the task that could not be done in 

paper and pencil environments, such as formulating conjectures based in the observation 

of variation of numerical attributes of figures, as was the case of Peter and Paul's 

approach; or the visualization of a relationship between two quantities obtained without 

the previous formulation of an algebraic expression as in the approaches developed by 
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Daniel, Emily, Jacob and Sophia. That is, the teachers were able to access the resources 

incorporated in the tool, specifically numerical and graphical resources available in 

Cabri, to develop a particular form of thinking to approach the problem. 

Concerning the justification process, Peter and Paul considered important to 

verify empirically that the construction satisfied the conditions stated in the problem and 

elaborated an algebraic proof of their conjecture. In this case, the use of measure tools 

was a mean to establish the validity of their construction; and the algebraic proof was 

employed to obtain an “exact” and not only an “approximated” solution. However, it can 

be observed that not all teachers verified that geometric configurations were constructed 

properly, neither all of them were aware of the importance to provide justifications using 

the means offered by the tool or external to it. These results differ from other research 

works that analyze the same problem. In those, it is concluded that the transition from a 

geometric conjecture to an algebraic proof, emerges from a discrepancy between a 

conjecture and the approximate results obtained with the tool, which suggested a different 

result (Olive, 2000). 

The plenary discussion supported Daniel, Emily, Jacob and Sophia to identify 

pitfalls in their work and reflect about some important mathematical ideas such as the 

domain of a function and the importance to provide justifications. Besides this, the 

interaction among member of the learning community allowed Peter and Paul to 

incorporate a visual approach to their repertoire of problem solving strategies.  

 

Second task 
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Peter and Paul selected a point A on the horizontal axis. The distance between 

point A and the origin O of the coordinate system represents the length of a side of the 

rectangle that teachers wanted to construct. Teachers used the “Numerical Edit” tool to 

define a quantity that represents the area of the rectangle, and to calculate the length of 

other side of it, they divided the length of segment AO by the area, and obtained the value 

c. Then, they transferred c to the vertical axis and obtained point B. Then, teachers drew 

rectangle OABC, calculated its area and dragged point A to verify that the area remain 

constant. Next, teachers obtained the perimeter of rectangle OABC to construct a graph 

relating a side of the rectangle and the corresponding rectangle´s area (Figure 5). In this 

problem, Peter and Paul incorporated to their repertoire of strategies the graphical 

approach discussed in the plenary session corresponding to the first task. 

 

Figure 5. Perimeter of rectangle OABC, as a function of a length of side OA. (Graph, 
elaborated by Peter and Paul) 

Teachers conjectured that the graph of the perimeter, as a function of side OA, 

consists of a branch of a hyperbola. Peter and Paul determined that although the locus 

was split in two branches, it was enough to consider one of them. Teachers tried to test 

their conjecture, first, by using the “Equation or Coordinates” tool, but the software did 
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not display the equation corresponding to the locus. Secondly, teachers selected five 

points on one of the branches for tracing a conic that, visually overlapped the graph, and 

by this mean they were convinced that the locus corresponded to a hyperbola. In the same 

way as in the first task, the software acted as a reorganizer, since it allowed Peter and 

Paul to develop graphical approaches to obtain evidence support their conjectures that are 

difficult to implement in paper and pencil settings. 

Peter and Paul also conjectured that minimum perimeter is reached when the 

rectangle is a square. Teachers did not construct an algebraic proof of their conjectures; 

they were convinced of their results based on the visual and numerical evidence provided 

by the software. The problem solving behavior of these teachers differs from that shown 

by them to solve the previous problem, in which they considered important to formulate 

and solve the problem algebraically. 

Sophia and Jacob approached this problem drawing a segment AB whose length 

represents the rectangle´s area. Then, they put a point C on AB, and stated that the length 

AC would represent one of rectangle’s sides. Sophia and Jacob transferred the measure of 

AC to the horizontal axis to obtain a point X. Then, they obtained the length of the other 

rectangle side computing the quotient AB/AC, and transferred this measure to the vertical 

axis to obtain point Y, finally they drew the rectangle OXZY (Figure 6). Later, teachers 

measured rectangle’s area to verify that this measure coincided with the length of 

segment AB. In this action, it can be observed the effect of interaction in a learning 

community, since in the previous problem; this pair of teachers does not considered the 

use of measure tools to verify their construction was correct. 
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Figure 6. Graph of the perimeter of rectangle OXZY, as a function of side OX, elaborated 
by Sophia and Jacob. 

Then, Sophia and Jacob constructed the graph that relates the perimeter of 

rectangle OXZY and the length OX, and conjectured that the minimum perimeter is 

reached when the rectangle is a square, based on dragging point C and the visualization 

of perimeter function. They did not elaborate an algebraic justification of their conjecture. 

Emily and Daniel had difficulties to build a rectangle of constant area in Cabri, 

and they tried to solve a simpler problem with the aim of using this to solve the original 

problem. They proposed constructing a triangle of constant area, and carried out the 

construction fixing the triangle’s base, and putting the third triangle’s vertex on a parallel 

line to the base of a triangle. Teachers verified, with the “Area” tool, that the triangle they 

constructed satisfied the condition of having constant area, and conjectured that the 

triangle of minimum perimeter is an isosceles triangle (Figure 7). In the process to 

approaching this task it can be observed that Daniel and Emily incorporated the use of 

measure tools to their repertoire of resources to verify accuracy of a dynamical 

construction, strategy which was discussed during plenary discussion of the first task. 



  TME, vol10, nos.1&2, p .127 
 

 
 

 

Figure 7. A family of triangles of constant area. 

In the same line of thinking, Daniel and Emily considered relevant to provide 

justifications. For instance, the teachers were able to justify that triangles they 

constructed have constant area since the base is fixed and all triangles of the family have 

the same height. Daniel and Emily also tried to use algebraic procedures to verify that the 

triangle of minimum perimeter is an isosceles one, but they were unable to algebraically 

formulate the problem, as can be observed in the figure 8. The analysis of the activity 

developed by Daniel and Emily, allows us to obtain evidence that the use of Cabri 

increases the number of problems that students, with a low ability to manage algebraic 

procedures, can tackle.  

 

Figure 8. Algebraic formulation for the minimum perimeter triangle problem. (Elaborated 
by Daniel and Emily) 
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Sophia and Jacob were interested in solving the previous problem, and they tried 

to find, by algebraic means, the triangle of minimum perimeter given the conditions 

stated by Emily and Daniel. The teachers formulated algebraically the problem (Figure 9, 

left) and using calculus tools and a hand held calculator to perform algebraic operations, 

they obtained the point that maximizes the perimeter of the triangle, and concluded that 

the triangle of maximum perimeter is an isosceles triangle. (Figure 9, right). 

 

Figure 9. Algebraic solution proposed by Sophia and Jacob. 

It was observed that discussion developed into the community, influenced the 

problem solving behavior of Sophia and Jacob, since these teachers incorporated the use 

of algebraic procedures to their repertory of justifications. On the other hand, when 

teachers solved this task, they used calculator Voyage 200 as an amplifier, since the tool 

was only employed to perform computations such as the derivative of the perimeter 

function  and to solve the equation . However, the use of the calculator 

allowed teachers to reflect about the results not encountered in paper and pencil settings. 

When Sophia and Jacob solved the equation , they obtained as a result 



  TME, vol10, nos.1&2, p .129 
 

 
 

. Sophia commented that the expression  means that the 

minimum perimeter is also attained if the base or height of the triangle is equal to zero, 

but in this case the triangle dissapears. 

 

Comments 

This task allowed us to observe that Cabri transformed teachers’ forms of thinking 

and reasoning. For instance, approaching tasks within a paper and pencil environment 

leads to consider the meaning of a variable with restricted properties, basically based on 

representing it with a symbol, say x. Meanwhile, using a dynamic software to approach 

the task, allowed teachers to construct the idea of a variable, not only as a symbol, rather 

as an amount that changes, as it can be observed when teachers dragged the point 

representing the independent variable to approximate the value that produces the 

minimum perimeter. That is, the use of Cabri, particularly the executability of 

representations, gives rise to a different meaning of the concept of variable, since the tool 

helps to perceive the idea of variation as the work of Peter, Paul, Jacob and Sophia has 

shown. We argue that the exploration of ideas such as variation and co-variation, through 

the use of a dynamic software, favors a reorganization of students’ cognitive processes, 

since it helps them to give meaning to ideas and concepts involved in the solution of 

optimization problems, such as the function concept. It is attained by means of 

visualization and perceiving how one quantity changes when the other does. 

 

Third task 



  Barrera-Mora & Reyes-Rodríguez 

 

To approach this task Peter and Paul drew a segment AB that represents the length 

of the wire. Then, they located a point P on AB. The lengths AP and PB were used to 

construct the square and the circle, respectively (Figure 10). To construct the square Peter 

and Paul divided the segment AB in four parts, the length of each of these parts is the 

length of the square’s side. To construct the circumference, the teachers obtained the 

radio using the calculator introducing the formula , where perimeter is the 

length of segment PB. 

With the “Area” tool the teachers computed the area of each of the figures, added 

them up and plotted the graph of area as a function of length AP. Based on visual 

perception, teachers conjectured that the graph is a parabola and approximated visually 

the value of segment AP that minimizes de sum of areas dragging point D. 

 

Figure 10. Graph of sum of areas of a square and a circle as a function of a length AP. 

To obtain the algebraic solution of the problem Peter drew on the board a segment 

AB and a point P on the segment, in a similar way as he did in the software. He denoted 

the length of segment AP as x, then he said that the length of segment PB is equal to 

. Since AP is the perimeter of rectangle, then the area of this rectangle is equal to 
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. Moreover, the area of the circle can be computed as  (figure 11, left). 

Then, Peter expressed the sum of areas as a function of x, and used the calculator to 

obtain the derivative of the function and its critical points (Figure 11, right). 

 

Figure 11. Algebraic formulation of the wire problem. 

Peter expressed that in the dynamic configuration he approached the point which 

minimizes the sum of the areas and compared it with the result obtained by substituting 

the particular values into the algebraic solution. 

The process employed by Daniel and Emily to solve the problem consisted in 

drawing a segment AB to represent the wire, and put a point C on AB which is the point 

where it is cut. Then, teachers constructed a square by considering as one of its sides the 

segment AC, they traced midpoint (D) of segment CB, and drew a circle with center D 

and radius DB. Daniel and Emily also computed the areas of the square and circle, and 

computed their sum S. Finally, teachers constructed a graph relating length of segment 

AC and the area S which is the sum of areas (Figure 12). The activity developed by the 
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teachers showed that they did not understand the problem statement, since the perimeter 

of the circle and square are not the lengths of segments AC and BC, respectively. Daniel 

and Emily had difficulties to understand the problem, even after Peter and Paul showed 

how they solved the problem; Daniel and Emily did not understand why the cable should 

be divided into four equal parts to construct the square. 

 

Figure 12. Dynamical configuration representing the wire problem, elaborated by Daniel 
and Emily. 

 

Comments 

Approaching this task, using technology, required by the problem solvers to think 

about the geometric objects in terms of actions, for instance, the actions to be consider to 

construct a square given a segment, are different from those when paper and pencil 

environment is used. The difference has to do with a “new quality” that the representation 

of the objects have when using Cabri, the executability property. 

In analogy with the previous tasks, the use of Cabri software allowed the problem 

solvers to relate geometric and algebraic aspects of the problem as well as to coordinate 

them into a wider conceptual network. For instance, it allowed them to assign the 

variable, which represented the side of a square or the radius of a circle, a more concrete 
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meaning in terms of variation and not only its representations as a symbol. Besides, as in 

the previous tasks, the idea of dependence between variables acquired a more robust 

meaning in terms of the concept of a function. The plenary discussion allowed the 

participants to reflect about the properties of a function concerning points where it 

reaches maxima or minima as well as its domain. 

 

Closing remarks  

The use of digital tools allowed teachers not solely to remember facts or apply 

algorithms, but most importantly, it helped them to formulate conjectures, and develop 

visual schemas to provide justifications. Mainly, measuring attributes and dragging 

elements in geometric constructions allowed teachers to formulate conjectures (Arzarello, 

Olivero, Paola & Robutti, 2002) and observe relations among mathematical objects that 

can be a departure point to develop a deeper mathematical understanding. 

It was observed that the use of technology helped teachers to develop ways of 

reasoning and forms of reflecting about the meaning and connections among 

mathematical objects. For example, the dynamic software enabled teacher to search for 

various forms of justifying a conjecture, in which the use and integration of visual, 

empirical and deductive arguments were useful. 

Based on the activities developed, we noticed that teachers founded their forms of 

reasoning strongly on the visual representations, a result previously reported by Arcavi 

(2003). The dynamism of representations helped teachers to think about variation of 

particular instances and provided them with empirical basis to formulate conjectures. The 

software provided feedback to the teachers (Arcavi & Hadas, 2000), but not all teachers 
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were able to give meaning to this feedback, which was observed in the form that Sophia 

and Jacob, and Emily and Daniel have solved the first task. 

The analysis of the tasks has shown a way in which the conceptual structure of the 

problem solver can be extended by incorporating the resources of the tool through the use 

of it in the process of solving problems. This was explicit when teachers used the tool to 

provide a visual representation of the information and by doing so, to approach a solution 

of the problem, which used algebraic setting as well as visual ones. That is, the 

capabilities of the tool as a cognitive reorganizer were based on the different possibilities 

that the tool offers to establish connections and to act as an extension of the cognitive 

structure of the teachers. 
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Abstract: The character of the mathematics education traditions on problem solving and 
proof are compared, and aspects of problem solving that occur in the processes of 
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Introduction 

Mathematics educators tend to compartmentalize the domains ‘problem solving’ 

and ‘proof and proving’.  This detachment seems somehow artificial as both deal with 

aspects of producing mathematical argumentation.  However, problem solving tends to 

emphasize the thought processes in furthering on-going work; in contrast the proof 

tradition is concerned more in evaluating the soundness of the complete output.  In this 

paper, we shall respect the distinction made between problem solving and proof, but at 

the same time we shall discuss issues that are common.  

We use the words ‘culture’, ‘tradition’ and ‘agenda’ synonymously for general 

views broadly adopted by the research community on any given educational perspective.  

Both the problem-solving tradition and the proof tradition are diverse, so we restrict 

ourselves to particular stances, mostly attending to the upper school and university level. 

For problem solving, the subject is taken for it’s own sake; hence the full weight of self-

conscious decision-making becomes the scope of investigation.  For proof, we distinguish 

the case where the practitioner possesses and implements the requisite mathematical tools 

to fully articulate the proof from the case where he/she does not.  The various types of 
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tools needed will be discussed, especially when the context lies in a mathematical theory 

currently been taught: then tools are adapted and appropriated from techniques that the 

theory avails.  However, such tools have to be designed and then coordinated in the mind, 

so within the processes in obtaining a proof it is evident that substantial elements of 

problem solving must occur.  The main focus of the paper is to give a preliminary 

account of these elements.      

In the next section, we shall present a short, rather personal, description of 

problem solving.  Largely supposing that the reader is familiar with the core principles 

laid out by Polya, it discusses more practical issues like the role of the teacher, 

implementation and assessment.  The section that follows deals with the problem-solving 

component in proof making. Here no attempt has been made to give a coherent picture of 

the proof tradition; one reason is that proof and proving are, as an educational domain, 

particularly prone to contrasting standpoints.  Rather we limit our attention to those facets 

of proof that differ from the problem-solving tradition but at the same time retain some 

problem-solving elements.  The choice of papers referred to is made with this in mind.  

The discourse will not be unidirectional; some points made could be read as if the culture 

of proof is supporting problem-solving activity. The extended example given in the 

penultimate section illustrates this, as well as other matters.  The epilogue, in part, raises 

the question how well the problem-solving tradition (as it stands presently) is equipped to 

cover the problem-solving elements in formulating proof.  

 
On the problem-solving tradition and allied practical issues 

The perspective of problem solving has a relatively compact core of ideas, mainly 

centered on heuristics, meta-cognition including executive control, accessing and 
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applying the knowledge base, and identifying patterns of modes of thinking as students’ 

work progresses, following the pioneering work of Polya (e.g., Polya, 1973) and later by 

Schoenfeld (e.g., Schoenfeld, 1985).  However, problem solving, as a domain of 

mathematical activity is very general; it concerns the student’s engagement on any 

mathematical task that is not judged procedural or the student does not have an initial 

overall idea how to proceed in solving the task.  Many other perspectives taken by the 

educational literature would embrace this same arena; for these the term problem solving 

is likely to be invoked (after all it is a term that is quite natural to use generally), but it is 

not a term around which the main focus revolves.  

On the practical level, to deserve autonomous attention, problem solving must 

have something to say about teaching and instruction.  The function of problem solving 

has been broadly characterized in three categories: teaching for problem solving, teaching 

about problem solving, and teaching through problem solving (Schroeder and Lester, 

1989).  For the first category, tasks are chosen that force students to think more actively 

about whatever mathematical topic that is being studied, the third is about building up 

conceptualization via a program of deliberately sequenced tasks.  For both, problem 

solving is given a utilitarian role.  On the other hand, for the second category, problem 

solving is taken per-se as an integrated theme of discourse, and we will largely adopt this 

perspective in this paper.  The teaching must be directed to the student’s own awareness 

of the influences that form his/her processes to reach a solution.  The teacher then has to 

teach not only mathematical content and method, but also general solving skills.  Doing 

this necessarily needs elements of intervention on the side of the teacher; he/she has to 

induce habits of self-questioning and reflection that allow students to realize ideas critical 
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in achieving a result.  This means that there are aspects of teaching problem solving that 

can be regarded authoritative (but not authoritarian), see e.g. B. Larvor (2010).  

If a problem-solving approach is adopted in teaching, there are associated issues 

about design and evaluation.  What constitutes a ‘good’ problem?  For this question, one 

could simply say that any problem for which there is not immediately an obvious line of 

attack is suitable.  But do other factors come in?  A sense of the attractiveness of the 

solution is one, a sense of achievement the solver experiences is another.  A measure of a 

‘good’ problem is how far a solution, or an attempt to achieve a solution, would inspire 

the solver to form related problems (Crespo & Sinclair, 2008).  Another possible measure 

might be the plurality of different directions that the problem can be treated so that 

connections can be formed (Leikin & Levav-Waynberg, 2007), though problems that have 

a particular ‘catch’ in the solution can also be useful because of the better control 

afforded to the teacher/researcher.  The evaluation of a student’s complete output, then, is 

not straightforward; a model is given in Geiger & Galbraith (1998).  Another factor is the 

gap of experience between the setter and the solver; here lies the danger that either the 

setter assumes that students have more experience than they really possess or the 

experience of the setter leads him / her to expect an over-involved solution blinding a 

more elementary path.  Hence it is difficult to gauge how challenging a particular 

problem is.  Further if you credit an argument by its plausibility rather than its logical 

security, you bring in a subjective factor.  Such points of loss of control in terms of 

evaluation makes problem solving, taken as an overall guiding principle in teaching, open 

to criticism.  For example, a recently published paper bears the rather provoking title: 

“Teaching General Problem-Solving Skills Is Not a Substitute for, or a Viable Addition 
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to, Teaching Mathematics” (Sweller, Clark & Kirsher, 2010).  The basis of the authors’ 

contention is well represented by their claim: “in over a half century, no systematic body 

of evidence demonstrating the effectiveness of any general problem-solving strategies has 

emerged”.  The position taken by the paper might well seem to be extreme and partisan, 

but it does reflect the difficulty in designing comprehensive, large-scale studies assessing 

the success (or otherwise) of teaching about problem solving, not least on what exactly 

should be measured.   

The principles behind problem solving can be significant to the working of a 

student of any age and of any ability, and there are numerous educational studies that 

advance the cause of problem solving convincingly to populations ranging from pre-

primary school level to professional mathematicians.  But making conscious decisions 

about which heuristics to use as well as how other metacognitive dimensions should be 

employed need mature deliberation.  In danger of seeming elitist, we consider there are 

two groups of students that are most able to cope with and profit from problem-solving 

based instruction; the so-called mathematically ‘gifted’ student at school, and the 

undergraduate student studying mathematics.  (A third group might be teacher- students, 

as they have to learn how to reflect on and attend to the difficulties of their future 

students.)  We are not saying that other students cannot gain from problem-solving 

activities, but for them the gain could well be qualified.  For instance, in Perrenet & 

Taconis (2009), it is stated “(university mathematics) students show aspects of the 

development of an individual problem-solving style.  The students explain the shifts 

mainly by the specific nature of the mathematics problems encountered at university 

compared to secondary school mathematics problems”.  Other papers offer models on 
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how traits of thinking are different for the gifted and the expert over the ‘average’ solver 

(e.g., Gorodetsky & Klavir, 2003). 

What sources cater for these special groups?  First, there is now a plethora of 

‘problem solving’ texts on the market; these usually list many challenging problems with 

exposition of some ‘model’ solutions.  However, most are composed in the spirit ‘you 

learn as you practice’, without much commentary on the educational level.  Typically the 

organization has some chapters based on general aspects of problem solving and others 

on problem solving that is mathematically domain-specific.  (It would be misleading to 

identify such books as textbooks because the aim is not to cover a fixed curriculum of 

mathematical content.)  The style of presentation can be daunting, but some tomes are 

particularly attractive and reader friendly.  One, written by P. Zeitz (Zeitz, 2007, p. xi), 

includes in its preface a list of principles guiding its writing that is surprisingly close to 

the tenets held by educational research on problem solving:  

 Problem solving can be taught and can be learned. 
 Success at solving problems is crucially dependent on psychological 

factors.  Attributes like confidence, concentration and courage are 
vitally important.  

 No-holds-bared investigation is at least as important as rigorous 
argument. 

 The non-psychological aspects of problem solving are a mix of 
strategic principles, more focused tactical approaches, and narrowly 
defined technical tools. 

 Knowledge of folklore (for example, the pigeonhole principle or 
Conway’s Checker problem) is as important as mastery of technical 
tools. 

Beyond problem-solving books, there is the collected ‘wisdom’ from the many 

dedicated teachers involved in ‘training’ students for mathematics contests and special 

examinations.  There are now some regularly held conferences aimed not only to attract 

such teachers but also researchers in education, such as one titled “Creativity in 
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Mathematics and the Education of Gifted Students”. The ensuing interaction between the 

two interested communities, the one more theoretically inclined, the other more 

practically minded, is valuable, and has enriched the educational literature published on 

problem solving especially over the last decade or so. The facet of ‘training’ in particular 

is interesting, for it does not at first seem to be quite consonant to the idea of flexible 

thinking as espoused in the problem-solving tradition held by educators.  

Another source is problem-solving courses offered in the curriculum of some 

university mathematics departments.  The content and ‘style’ of the delivery of a class 

usually is a mixture of: introductory statements made by the instructor, students’ 

attempting to solve particular problems quite often conducted in small groups, students 

criticizing peers work, a class discussion about how solutions were instigated and how 

completed arguments functioned to realize the solution.  The instructor perhaps in the end 

winds up the session by relating the class activity to terminology found in the problem-

solving culture.  For such a free ranging course, an accompanying textbook is out of 

place; rather a succession of class-plans by the individual teacher is followed ad lib.  This 

raises the issue of the demands put on a teacher when teaching a problem-solving course, 

and whether they have to be trained to teach in a special way (see e.g. A. Karp, 2010).  

Another awkward point concerning courses oriented towards problem solving is that the 

level of interaction is high, so really are suitable only for classes of a relatively small size.  

The yearly intake of students to a mathematics department can be in the hundreds, with 

the result that a problem-solving course is usually selective and non-compulsory.  Thus 

the course effectively becomes a special interest class on a par to ‘standard’ courses that 

present particular mathematical theory.  Where then is the universal need for 
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undergraduates to be instructed in problem solving?  Indeed, it is reported in Yosof and 

Tall, 1999, that students who took a problem-solving course mostly enjoyed the 

experience but they found difficulties to apply what they learnt in other courses. 

(At this point, we should clarify our position on the use of textbooks; as we 

asserted above, textbooks perhaps do not have a place in teaching about problem solving, 

but they certainly have their place in teaching for problem solving.  The idea is that the 

whole structure of the book consists of carefully sequenced problems leading up to major 

theorems in a main field of mathematics.  It replaces a ‘standard’ presentation of a topic 

in the curriculum.  An example is found in a book by Polya & Szego for Analysis first 

published in 1924 (translated into English in 1978); more recently R. P. Burn has written 

several textbooks (e.g., R. P. Burn, 1992) in the same kind of spirit.  A natural question 

arises: does a course based on such a textbook infuse general problem-solving 

sensibilities?)  

Much that we have discussed so far is addressed to practical matters; the focus for 

the remaining part of the paper will be based on theoretical lines.  There are many 

expositions extant that have elaborated on the core ideas, i.e. heuristics, metacognition 

and observing phase patterns during the solution process.  Some have a local perspective, 

some attempt to present overall models to refine the character of the whole field.  For the 

latter, (Carlson & Bloom, 2005) is a good example; the authors develop what they call a 

‘Multidimensional Problem-Solving Framework’, which tabulates items along two axes: 

activity phases against resources, heuristics, affect and monitoring.  Within the 

framework it is stressed that various aspects of cycling in types of activity occur in 

problem-solving behavior.  The paper clearly is in the fold of the problem-solving 
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tradition.  But for many papers, this is not so clean-cut; in them there is substantial 

material that seems to be in accord to the tenets of problem solving but the ostentatious 

perspective lies elsewhere.  In Mamona-Downs and Downs (2005), it was argued that if 

we wished to form an ‘identity’ of problem solving we must examine how other 

mathematics education topics impinge.  One topic brought in was ‘proof’.  The ‘terrain’ 

of proof obviously encompasses many reasoning processes that are common to problem 

solving, so it is a natural candidate for comparison.  In the next section we shall discuss 

the confluences (and to some degree the disparities) between the domains; references are 

made to papers that are ostensibly placed in the proof agenda but betray interesting 

problem-solving traits.   

 
The interface between problem solving and proving 

Proof and proof production is associated with deductive reasoning.  From the 

perspective of problem solving, the notion of deductive reasoning can seem artificial; 

employing deductive reasoning on its own cannot help students to build up the ideas 

involved in the making of a strategy, it can only inform the student that any particular act 

is ‘legal’ or the whole argument a-posteriori is logically sound.  On the other hand 

induction, i.e. obtaining evidence from considering cases that are not exhaustive, is useful 

for explorative work but is insufficient to establish the desired result.  Over the years 

numerous models of reasoning have been put forward to fill the gap between inductive 

and deductive argumentation.  To mention a few, there is representational reasoning 

(Simon, 1996), abductive reasoning due to Pierce (see Cifarelli, 1999, for a contemporary 

summary), and plausible reasoning derived from Polya himself (Polya, 1954).  Such 

models differ in detail, but all deal in one way or another with a shift from a speculative 
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mode of thinking to one that has an anticipatory character.  Any type of mathematical 

reasoning suggests an a-posteriori summation of the lines of thought taken before; the 

question “what is your reasoning here” is a request to track back.  Despite this, it still 

concerns on-going working; an advance in reasoning depends on the problem-solving 

decisions preceding it.  In this respect some authors like to discriminate between 

reasoning and argumentation; for example, Lithner (2001) takes argumentation as the 

‘substantiation’ that convinces you that the “reasoning is appropriate”.  Argumentation 

then suggests a completion as well as a check that your reasoning is, in loose terms, 

getting the job done; as such, argumentation should be closely related to proof, in 

cognitive terms at least.  It has always been contentious what a proof is; perhaps the 

range of interpretation today is as wide as it has ever been.  Here is not the place to give 

even a skeleton sketch of the current views taken about the role and character of proof; a 

comprehensive account from the mathematical education perspective is to be found in the 

book Reid & Knipping (2010).  In the last recommendation for ‘Directions for Research’ 

in this book, it is stated,  “the relationship between argumentation and proof is far from 

clear” (despite the numerous theoretical theses forwarded in this area).  In explaining this 

relationship it might be instructive to explore what different problem-solving skills we 

would expect vis-à-vis argumentation and proof. 

Is proof for every student and for every age?  Leading up to answer this question 

we regard ‘deductive’ or ‘formal’ proof as an ideal rarely adhered to.  What, then, do 

professional mathematicians tend to produce?  We believe that this issue is nicely 

expressed in a public lecture given by Hyman Bass (2009) where the image of a proof 

providing certification is replaced by an image of a proof supporting a claim: 
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“ Proving a claim is, for a mathematician, an act of producing, for an 
audience of peer experts, an argument to convince them that a proof of the 
claim exists…the convinced listener feels empowered by the argument, 
given sufficient time, incentive, and resources, to actually construct a 
formal proof”.    p. 3 
Hence a typical proof provided by a mathematician is an argument for which 

there is a potentiality to convert it into formal proof (in principle at least).  Bass then 

considers the notion of generic proof (see also, e.g., Leron & Zavlasky, 2009) as a type of 

proof that mathematicians often accept and adopt, and convincingly relates an incident 

where a primary school child was able to express a generic proof (in joint work with D. 

Ball).  The child was able to explain the proposition that ‘the sum of two odds are even’ 

by mentally imagining two separate collections each with an odd number of objects, 

pairing off objects that lie in the same collection as far as possible and pairing the two 

objects ‘left over’ one from each collection.  One might say the argumentation takes 

place on the perceptional level and so cannot be regarded as a proof.  On the other hand, 

the reasoning is executed through properties that suggest both abstraction and 

generalization are involved; from this criterion, perhaps it should qualify as a proof after 

all.  The obvious stance to take is to acknowledge different levels of proof.  For example, 

in the opening document for ICMI Study 19 (2009) on proof, the terms ‘developmental 

proof’ and ‘disciplinary proof’ are introduced.  A major factor in this distinction is that 

students at school do not usually possess the requisite tools to allow them to articulate 

disciplinary proof, whereas in the culture of advanced mathematical thinking (pertaining 

mostly to tertiary level study) pains are taken to explicitly define the tools needed to 

process proof in a particular field.  For example, if the Intermediate Value Theorem of 

Real Analysis is mentioned at school it is usually taken as a truism, but at university 

either it has to be proved or explicitly recognized as a premise.  Hence the learning of 
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mathematics at the university level is ‘privileged’ in terms of proof making; in principle, 

the tools are available, or the tools are at hand to ‘design’ further finely-honed tools for 

your own specific purposes.  

How does the above concern problem solving?  As regard to ‘developmental 

proof’, students have to rely on mental images and loosely grounded representations; the 

processes in initializing, collating and monitoring the argumentation as it evolves are 

very much in the field of problem solving.  But because now mostly we are angling for an 

‘informal’ justification of a general proposition, there is a tendency for properties to 

determine objects rather than vice-versa.  Here, the notion of characterization comes to 

the fore; you ask which objects satisfy the conditions (rather than asking which properties 

a given object satisfies).  Even though there is no real difficulty in designing tasks asking 

for a characterization in the problem-solving mold, this aspect is poorly represented as a 

theme in the literature.  What quite often occurs is that the solver identifies a class of 

objects, C say, for which either all the objects that hold the given conditions are shown to 

be in C or all the objects of C are shown to satisfy the conditions.  Several rounds can be 

made in restricting or expanding the class respectively, until analysis allows the removal 

or inclusion of any remaining isolated exceptions.  Such a program probably is best 

illustrated in the literature by the framework of ‘example generation’, largely launched 

through some work of Mason and his colleagues (e.g. Watson & Mason, 2005).  Also 

related is the Lakatosian notion of ‘heuristic refutation’, where counter examples are not 

taken to disprove but in order to reformulate the premises (e.g. De Villiers, 2000).   

For disciplinary proof, in principle the tools to prove are at hand.  But an informal 

discourse is usually kept to whilst engaged in the actual production of the proof, though 
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much technical terminology is retained.  For the mathematician who holds well the topic 

concerned, the technical terminology is not a barrier to understanding, to the contrary it is 

empowering (Thurston, 1995). Whenever there is an interaction between an informal 

language and one that is more documentarily directed, problem solving has its place; 

strategy making is made in the informal language and ‘converted’ to the documentary 

style.  The problem-solving aspects so evoked would have restrictions compared to 

general problem solving but they are nevertheless important.  Below, particular angles of 

this issue are mentioned.  In the context of building up a mathematical theory, a meta-

cognitive examination of a proof is required to understand what is important to retain in 

the memory; the proof, the fact that the proof ascertains, both or none.  For example, a 

method can be extracted from a proof, which has a potential to be applied elsewhere; in 

Hanna & Barbeau (2008), this phenomenon is discussed through various facets of 

problem solving.  Structuring mathematical work into semi-independent units acts not 

only to produce a neat exposition but also represents essential ‘chunking’ of lines of 

thought without which the mind could well be overstrained.  The deliberate design of 

modules in order to process the desideratum would seem to lie naturally in the realm of 

executive control.  (For an illustration, see the worked example appearing in the next 

section.)  For disciplinary proof the knowledge base typically is sophisticated and in flux; 

one possible consequence of this is that the solver could be tempted to apply knowledge 

that far exceeds the needs of the task/proof.  An instance is given in Koichu  (2010) from 

an example-generating activity.  Also, the detection of applicability of theoretical 

knowledge is not often immediately apparent; in Mamona-Downs (2002) it is suggested 

that part of the teaching of a mathematical theory should include what the author terms 
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‘cues’, i.e., formats of knowledge that are not important theoretically but invite 

realization of certain types of application.  (An instance is to be found in the worked 

example.)  Changing track a little, we note that there is still a strand of informal discourse 

in disciplinary proof, so one might expect that some students would like to exploit it more 

than others.  In this respect some research, mostly aimed at the tertiary level, has indeed 

identified students that have a strong inclination to work consistently either semantically 

or syntactically (e.g. Weber & Alcock, 2004).  Such a marked preference must reflect the 

character of the problem-solving tools with which a particular student feels most at ease.  

Another but related issue is how to initiate a proof; Moore (1994) has noted that from 

fairly elementary but formally defined systems many students cannot deduce the simplest 

consequences, whereas Selden et al. (2000) talk about ‘tentative starts’.  The first 

suggests that students cannot interiorize the abstraction that confronts them, the second 

suggests a more pro-active view that by ‘playing around’ with operations that they can 

do, even ‘blindly’, students can ‘click’ to openings in the underlying (or accommodating) 

structure yielded by the given situation.  (Our worked task also features a tentative start.)  

The notion of structure, even though being somehow vague, seems to be a natural 

backdrop to combine the analytic tools given by formalization with problem-solving 

input, see Mamona-Downs & Downs (2008).  

We wind up this section by raising a few points for which the difference between 

disciplinary and developmental proof is no longer relevant.  First, whenever a shift of the 

mode of thinking occurs, the character of the supportive components of problem solving 

also changes.  We have already discussed how an informal language reinforces 

(disciplinary) proof.  The making of a conjecture also marks a change in the mode of 
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thinking; one could compare the style of argumentation made before the conjecture to 

that made after.  If you adopt the more conventional propositional form of a proof 

perhaps it would be more appropriate to compare pre-strategy work with work done in 

effecting the strategy.  Also, how does the reasoning allowing a first draft differ to the 

reasoning leading to the final presentation of a proof?  In particular, whilst obtaining a 

proof sometimes recourse is made to diagrams and other kinds of representations that, 

quite often, are not ultimately referred to in the presentation.  Another differentiation in 

mode of thought concerns what is processed in the mind against what is carried by 

‘authorized’ symbolic usage.  Even though these switches of thinking are documented in 

the literature, they have not been thoroughly examined in the problem-solving tradition. 

Second, we resume our discourse regarding the essential difference between proof 

and problem solving.  We center our problématique on discerning ‘problem solving’ 

tasks from ‘proof’ tasks.  For a ‘problem solving’ task it is allowed to accept perceptual 

indications, as long as they seem self-evident. Verification itself does not feature strongly 

in the difference; rather a task requiring a proof differs in that the verification has to be 

articulated in officially accepted mathematical language; one might say we require an 

endorsement of the verification.  Let’s have an example. The task is to identify the 

different types of plane nets of a cube.  It’s a problem that can be tackled by a bright 

student of age eight, even though there are quite sophisticated things to do; first to 

interpret from the task environment what is meant by a ‘type’, and after to validate the 

answer by taking cases in an exhaustive manner.  But the argument cannot be judged to 

be a proof because each net is just recognized as being one; there is no explicit 

mathematical warrant expressed that assures that when the squares are folded in the 
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appropriate fashion they do indeed ‘form’ a cube.  Furthermore there is no expectation 

for the solver to undertake this ‘extra’ level of verification; thus what we have here is a 

problem-solving task. 

An interesting offshoot of the above concerns mathematical modeling.  Suppose a 

task is expressed in words that are not completely mathematical in form; it is modeled 

into a self-contained mathematical system in which it can be treated as a proof.  

However, the action of modeling certainly is subjective; so the task is better assigned as a 

‘problem-solving’ task, but with a strong proof-making component.  Also note that 

informal argumentation carried out within the task environment sometimes can be 

sustained right up to achieving a solution; if a more strict version is desired, modeling can 

be made not only of the task but also of the line of the context-held reasoning. This can 

be a valuable vehicle for students to realize the character of proof; proof in this regard is 

a channel to provide the tools to fully articulate the output of a problem-solving activity, 

see Mamona-Downs & Downs (2011). 

 
An example 

The example takes the form of an indicative solution path of a particular task; it 

exemplifies some points made in the previous section. 

The task is relatively complicated to solve, though no complex mathematics is 

involved.  A strategy is made without knowing which tools are needed to implement it.  

Designing these tools requires anticipatory reflection but the form of them rests on simple 

proofs, so we have a case where the proof culture contributes to problem solution 

processes. The style of discourse indeed is made very much in a problem-solving vein, 

but from it a presentation as a proof is readily extracted.  
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The task: 

Does the harmonic series  have a partial sum equal to an integer apart from 

1? 

Preliminary observations; sizing up the situation 

From previous knowledge, we know the harmonic series ‘converges’ to , i.e. for 

every nN, there is a partial sum that exceeds n.  Hence there are ‘infinitely’ many 

potential candidates for a partial sum to be an integer, so we cannot reduce the problem to 

a finite number of cases.   

The first partial sum equals 1; can we make a preliminary guess whether it is 

likely for any other partial sum to be an integer?  In response, take any nN\{1} and 

consider the greatest rN for which  < n. Then for n to be a partial sum necessarily: 

n -   must equal .  

 

This condition seems stringent because of the appearance of r in both terms, so 

despite there being infinitely many candidates for n, it still would be a surprise to get a 

solution apart from 1.  But this does not really help us to get a start for a strategy that 

would be conclusive.   

 

Playing around; try out an action you can do     

A partial sum is just a finite number of fractions added up; an action you can 

perform is to render this into a single fraction, i.e.  

1
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This move is made as a tentative start; it is speculative in the sense that there is a 

hope (but not an expectation) that the new algebraic form might give us more handles to 

attack the task.  Notice that the new form is one natural number divided by another; the 

question is reduced to analyzing whether the latter is a divisor of the prior. 

 

Importing mathematical knowledge and its cue  

The knowledge we import is the theorem that states any natural number greater 

than one can be expressed (uniquely) by a product of prime powers.  The cue relevant to 

the task is if you think that n does not divide m, for m, n N, then there will be a prime p 

such that the highest power of p dividing n is greater than the highest power of p dividing 

m.  

The strategy  

Suppose that the solver believes that there is not a solution apart from 1.  In 

accordance he/she chooses the ‘simplest’ prime, i.e. 2, and tests whether the highest 

power of 2 dividing r! is greater than the highest power of 2 dividing the nominator in 

(1).  (If this test fails, one might choose another prime to check, or change the method 

from the experience gained by considering the case p=2).   

 

Considerations how to implement the strategy 

1
i

i1

r

 

r!
i

i1

r


r!

. (1)
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In order to analyze the highest power of 2 dividing 

   

you have to search for more elementary and general properties about the highest power of 

2 dividing integers.  For convenience, we introduce the rather eccentric (but standard) 

symbolism: 2a || u where a, u N indicates that a is the highest power of 2 dividing u. 

 

Designing the auxiliary tools   

(i) Investigate: If 2a || u, 2b || v and 2c || (u+v), what is c in terms of a and b?  

It is easy to demonstrate that  

    if ab, then c=min (a, b) 

    if a=b, then ca+b  

but nothing further can be said in general for the second implication.  Hence in the case 

of ab we have more control than in the case of a=b.   

(ii) In order to take advantage of the good control that occurs in the case of ab it 

is useful to have this fact established: 

If 2a || u and 2a || v (where u<v), then there is a natural number w such that w>u, 

w<v and 2a+1 || w.  An immediate corollary is: 

Suppose that S:={1, 2, 3,...,r} and : = Max{ :  kS s.t. k}.  Then there is 

a unique element k of S for which 2l || k.      (2)   

 

Implementation of the strategy  

 Here we show how the auxiliary tools facilitate the original situation: 

r !

ii1

r



l l 2 l ||
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Let 2N || r!  and   whenever i ≤ r.  Now the highest power of 2 dividing 

 

For k and l specified in (2), the highest power of 2 dividing  is equal to N -  so 

is less or equal to N - Ni; the equality holds only when i=k (second auxiliary tool).  

Applying the first auxiliary tool (recursively) we know that  

 . 

Now Nk is simply an alternative symbol for , so for i > k, N-Ni > N-Nk and we 

can again apply the first auxiliary tool to obtain  

 . 

Now if r>1,  is a positive integer, so the highest power of 2 dividing the 

nominator in (1) is less than that for the denominator.  We are done.  

  
Comments 

1. The preliminary observations are made not only to ‘understand’ the 
task, but include comments concerning a ‘feasibility test’ in order to 
make an informed guess on what the most likely outcome would be.  
Note that this guess is not made on experimental evidence.  

2. The preliminary observations did not give a lead how to approach the 
task.  A blind algebraic operation is made, resulting in another 
algebraic form and a new perspective.  This action was not motivated, 
so there is an element of luck here.   

3. The new form is a quotient of natural numbers; the issue now is to try 
to show that the denominator does not divide the nominator.  (Guided 
by our feeling that the solution space is empty). This issue then could 
be resolved through an application of the fundamental theorem of 
arithmetic.  Would students notice this link?  Suppose that this type of 
application was taught, would they be more likely to catch the ‘cue’? 

4. We now have a strategy; we take a particular prime p in the hope the 
greatest power of p dividing the nominator is less than that of the 

2Ni || i
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i
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denominator.  Things are still tentative; we don’t know as yet whether 
the strategy is intractable or not, and we choose p=2 solely on the 
grounds that 2 is probably the easiest prime to work with.  Our 
decisions here have as much to do with hopeful wishing as control.   
However, somehow we judge the direction we have taken is 
promising. 

5. We have a strategy, but now we need a strategy to implement the 
strategy. Modules of a more theoretical character are designed 
deliberately directed to the implementation.  These modules can stand 
on their own merit outside of the context of the original task with 
autonomous proofs.  Designing such analytic tools vis-à-vis 
envisaging how they would fit in the particular argumentation can be 
challenging. 

6. In the process of resolving the task, there are several places where the 
solver is not completely controlling the effect of the decisions or 
actions that have been made.  Were we just lucky?  No: luck comes in, 
but from a certain stage there is an anticipation that things would work 
out as envisaged.  But this raises the question, how can we quantify the 
grounds of this anticipation. 

  

Epilogue  

The main drive of this paper is to consider how elements of the problem-solving 

tradition are evident in the formulation of a proof, and (to a lesser degree) vice-versa. 

Also occasionally we have drawn out diverging tendencies between the two traditions.  

One difference not as yet explicitly mentioned is that tasks in the domain of problem 

solving are intended to be challenging, whereas for proof no such intention is imputed.  

In this regard, it is now quite often to have a transition course aimed towards proof 

practices in the curriculum of a mathematics department, especially in the United States; 

the ‘content’ of the examples presented tend to be relatively elementary in order to 

concentrate on the exposition of logically based argumentation. Such courses have a 

completely different ‘feel’ to problem-solving courses.  We have stated that there is some 

doubt that taking a problem-solving course really will help the student when more 

theoretical courses are studied, but a ‘proof’ course could also be problematic in other 
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ways.  For example, in Alcock (2010) it is reported that some mathematicians felt that 

those students who can pass a proof course would be the ones that did not really need to 

take the course anyway.  Given this, a mix of the two kinds of courses might be the most 

profitable.  It would bring up, for example, situations for which a student can achieve a 

result informally, and then can be challenged to articulate it with consummate reasoning 

and grounds; also it would bring up situations for which the student cannot proceed 

without building up constructions of a formal character.  Proof should not be shown just 

as an imposition, but as a channel that enhances our range of mathematical thought and 

potentialities. The two kinds of situations mentioned above surely pertain to problem 

solving as much as to proof, but bring out a tempered outlook towards the current 

tradition of problem solving.  To the mathematician, answering a typical problem-solving 

task often is an enjoying and rewarding pursuit, but can seem frivolous if aspects resting 

on perception are not tied down mathematically. 

In the paper by Alcock referred to above, the author identifies four modes of 

thinking whilst forming a proof (drawing on the comments of a small population of 

mathematicians); instantiation, structural, creative and critical.  These bear a striking 

semblance to the set of phases in problem solving famously put forward by Polya, i.e., 

getting acquainted, working for better understanding, hunting for the helpful idea, 

carrying out the plan, looking back (Polya, 1973, p.p. 33-36).  The main discrepancy 

between the two taxonomies is that ‘structural thinking’ is characterized by introducing 

appropriate definitions and by working according to the rules of logic.  This is consonant 

to the notion of definitional tautness introduced in Mamona-Downs and Downs (2011) 

that is not currently stressed in the problem-solving tradition.  But the meta-cognitive 
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thought involved in forming definitions whilst partially envisaging how to control their 

consequences to particular ends has problem-solving elements that should not be ignored; 

then, perhaps, problem solving might be just as relevant in proving as it is in more 

relaxed forms of argumentation.  In this paper we have examined elements of problem 

solving in the context of proof construction, admittedly in a rather eclectic way. We 

suggest that further research in this direction should be undertaken in the future, 

involving both researchers primarily ‘affiliated’ to proof and those primarily concerned 

with problem solving.     

 

References 

Alcock, L. (2010).  Mathematicians’ Perspectives on Teaching and Learning of Proof.  

Research in Collegiate Mathematics Education, CBMS Issues in Mathematics 

Education, 16, 63-91.  

Bass, H. (2009). How Do You Know that You Know? Making Believe in Mathematics.  

Distinguished University Professor Lecture. Rackham Amphitheatre – March 25, 

University of Michigan.  

Burn, P. P. (1992).  Numbers and Functions.  Steps into Analysis.  University Press, 

Cambridge.  

Carlson, M. P. and Bloom, I. (2005). The cyclic nature of problem solving: an emergent 

multidimensional problem-solving framework. Educational Studies in Mathematics, 

58, 45-75.  

Cifarelli, V. (1999).  Abductive inference: Connections between problem posing and 

solving.  Proceedings of PME 23, Vol. II, 217-224.  Haifa, Israel. 

Crespo, S. and Sinclair, N. (2008). What makes a problem mathematically interesting? 

Inviting prospective teachers to pose better problems. Journal of Mathematics 

Teacher Education, 11 (5), 395-415.    

De Villiers, M. (2000). A Fibonacci generalization: A Lakatosian example.  Mathematics 

in College, 10-29.  



  Mamona-Downs & Downs 

 

Geiger, V., Galbraith, P. (1998).  Developing a diagnostic framework for evaluating 

student approaches to applied mathematics problems. International Journal of 

Mathematical Education in Science and Technology, 29(4), 533-559. 

Gorodetsky, M., Klavir, R. (2003). What can we learn from how gifted / average pupils 

describe their processes of problem solving? Learning and Instruction 13, 305-325.   

Hanna, G. and Barbeau E. (2008).  Proofs as bearers of Mathematical Knowledge.  ZDM, 

The International Journal on Mathematics Education, 40 (3), 345-353.      

Hanna, G. et al. (2009). ICMI Study 19: Proof and Proving in Mathematics Education: 

Discussion Document.    

Karp, A. (2010).  Analyzing and attempting to overcome prospective teachers’ 

difficulties during problem-solving instruction. Journal of Mathematics Teacher 

Education, 13, 121 – 139.  

Koichu, B. (2010).  On the relationships between (relatively) advanced mathematical 

knowledge and (relatively) advanced problem –solving behaviors.  International 

Journal of Mathematical education in Science and Technology, 41(2), 257-275. 

Larvor, B. (2010).  Authoritarian Versus Authoritative Teaching: Polya and Lakatos.  In 

G. Hanna et al (eds.) Explanation and Proof in Mathematics: Philosophical and 

Educational Perspectives.  71-83,  Springer.  

Leikin, R, Levav-Waynberg, A. (2007).  Exploring mathematics teacher knowledge to 

explain the gap between theory-based recommendations and school practice in the 

use of connecting tasks.  Educational Studies in Mathematics, 66 (3), 349–371.  

Leron, U. & Zaslavsky, O. (2009).  Generic Proving: Reflections on Scope and Method.   

ICMI Study 19: Proof and Proving in Mathematics Education. Vol. 2, 52-58. 

Lithner, J. (2000).  Mathematical reasoning in task solving.  Educational Studies in 

Mathematics, 41, 165–190.  

Mamona-Downs, J. (2002).  Accessing Knowledge for Problem Solving.  Plenary 

Lecture in the Proceedings of the 2nd International Conference on the Teaching of 

Mathematics (at the undergraduate level), (electronic form), Hersonissos, Crete.  

Mamona-Downs, J. and Downs, M.  (2005). The identity of problem solving.  Journal of 

Mathematical Behavior 24, 385-401. 



  TME, vol10, nos.1&2, p .161 
 

 
 

Mamona-Downs, J. & Downs, M. (2008).  Advanced Mathematical Thinking and the role 

of Mathematical Structure.  In Lyn English (Chief Ed.) Handbook of International 

Research in Mathematics Education, 154 – 175, Routledge, Taylor & Francis Group, 

New York & London. 

Mamona-Downs, J. & Downs, M. (2011).  Proof: A Game for Pedants?  Proceedings of 

CERME 7, to appear. 

Moore, R. C. (1994).  Making the transition to formal proof. Educational Studies in 

Mathematics, 27,  249-266. 

Perrenet, J., Taconis, R. (2009).  Mathematical enculturation from the students’ 

perspectives: shifts in problem-solving beliefs and behavior during the bachelor 

programme.  Educational Studies in Mathematics, 71, 181-198. 

Polya, G. (1973). How to solve it.  (2nd ed.).  Princeton: Princeton University Press. 

Polya, G. (1954). Mathematics and plausible reasoning.  Princeton, N.J.: Princeton 

University Press.   

Reid, D. A. & Knipping, C.(2010). Proof in Mathematics Education. Sense Publishers. 

Schoenfeld, A. (1985).  Mathematical problem solving.  Orlando, Fl: Academic Press.  

Schroeder, T. L. & Lester, F. K. (1989).  Developing understanding in mathematics via 

problem solving.  In P. R. Trafton (Ed.), New directions for elementary school 

mathematics, 31-56.  Reston, VA: National Council of Teachers of Mathematics.   

Selden, A., Selden, J., Hauk, S., & Mason, A.  (2000).  Why can’t calculus students 

access their knowledge to solve non-routine problems?  Research in Collegiate 

Mathematics Education IV, CBMS Issues in Mathematical Education, 8, 128-153.  

Simon, M. (1996).  Beyond Inductive and Deductive Reasoning: the Search for a Sense 

of Knowing.  Educational Studies in Mathematics, 30, 197-210. 

Sweller, J., Clark, R., Kirschner, P. (2010).  Teaching General Problem-Solving Skills Is 

Not a Substitute for, or a Viable Addition to, Teaching Mathematics.  Notices of the 

AMS, 57(10), 1303-1304.     

Thurston, W.P. (1995). On Proof and Progress in Mathematics.  For the Learning of 

Mathematics, 15 (1), 29-37.  

Watson, A. and Mason, J. (2005).  Mathematics as a constructive activity: learners 

generating examples.  Mahwah, New Jersey, USA: Lawrence Erlbaum Associates. 



  Mamona-Downs & Downs 

 

Weber, K. & Alcock, L. (2004).  Semantic and Syntactic Proof Productions. Educational 

Studies in Mathematics, 56, 209-234.  

Yosof, Y. M. & Tall, D. (1999).  Changing attitudes to university mathematics through 

problem solving.   Educational Studies in Mathematics, 37(1), 67-82. 

Zeitz, P. (2007).  The Art and Craft of Problem Solving. John Wiley & Sons, Inc.  

 



  TME, vol10, nos.1&2, p.163  
 

 
The Mathematics Enthusiast, ISSN 1551-3440, Vol. 10, nos.1&2, pp.163-190                  
 2013©The Author(s) & Dept of Mathematical Sciences-The University of Montana  
 

Becoming Aware Of Mathematical Gaps In New Curricular Materials: A 
Resource-Based Analysis Of Teaching Practice  

  
José Guzman1 

Dept. of Mathematics Education, CINVESTAV-IPN, Mexico City 
Carolyn Kieran2 

Département de mathématiques, Université du Québec à Montréal 
 

Abstract: The study featured in this article, with its central focus on resources-in-use, 
draws upon salient aspects of the documentational approach of didactics. It includes an a 
priori analysis of the curricular resources being used by a teacher for the first time, 
followed by detailed in situ observations of the unfolding of her teaching practice 
involving these resources. The central mathematical problem of the lesson being analyzed 
deals with families of polynomial functions. The analysis highlights the teacher’s 
growing awareness of the mathematical gaps in the resources she is using, which we 
conjecture to be a first step for her in the evolutionary transformation of resource to 
document, as well as an essential constituent of her ongoing professional development.  
 
Keywords: documentational approach of didactics, documentational genesis, curricular 
resources in mathematics, families of polynomial functions, mathematical gaps in 
resources, ongoing professional development, resources-in-use, research on teaching 
practice with new curricular resources. 
 

 

Introduction 

Mathematical problems suitable for use in high school classrooms can be obtained 

from a variety of resources, including the internet, newspapers and books, colleagues, and 

of course textbooks. There is general consensus that most mathematics teachers rely on 

textbooks for their day-to-day fare of problem-solving items for students (Schmidt, 

2011). Over time, these problems and the ways in which they are presented to students 

get tinkered with and gradually become refined (Gueudet & Trouche, 2010, 2011). 

However, we are only now beginning to learn a little about the ways in which teachers 
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interact with the mathematical resources available to them (Gueudet, Pepin, & Trouche, 

2011). Chevallard and Cirade (2010) have raised an additional issue, that of the lack of 

adequate mathematical resources for teachers when the school program is changed and 

new problems and problem-solving approaches are introduced. Moreover, as pointed out 

by Artigue and Houdemont (2007), many teachers who teach mathematics – even at the 

level of secondary school – are not mathematics specialists and “are quite often not 

proficient in mathematics, and that the mathematics and didactic formation they receive 

during their training does not compensate for these limitations” (p. 376). Although a 

focus on the mathematical resources available to teachers, their supportive role, and their 

adaptation and adoption is not one that, up to now, has been central to the research 

agenda of the problem-solving research community, its importance can be argued for, at 

the very least, on pragmatic grounds: The ways in which resources support (or do not 

support) teachers in their problem-solving efforts in class clearly impact upon the 

problem-solving experience of students.  

 
According to Remillard (2005) who conducted a seminal review of teachers’ use 

of curricular materials, the process by which mathematics teachers appropriate and 

transform such resources, as well as the support that these resources offer, is rather 

unexplored terrain. In 2000, Adler similarly proposed that “mathematics teacher 

education needs to focus more attention on resources, on what they are and how they 

work as an extension of the teacher in school mathematics practice” (Adler, 2000, p. 

205). In one such study of teachers using reform-based curricular materials, Manouchehri 

and Goodman (1998) reported what they viewed as shortcomings in the guidance for 

teachers provided by the curricula, saying that the curricula “did not provide the teachers 
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with detailed methods of how to address the content development” (p. 36). Teaching with 

new resources can thus lead to situations where teachers are not suitably prepared, but 

which can provide the impetus for new awarenesses of both a mathematical and 

didactical nature. In this regard, Gilbert (1994) has said: “reflection-in-action occurs 

when new situations arise in which a practitioner’s existing stock of knowledge – their 

knowledge-in-action – is not appropriate for the situation” (p. 516). This reflection-in-

action, which involves critical examination and reformulation of one’s existing knowings, 

is intimately connected to, and synergistic with, one’s evolving appropriation and 

transformation of resources, according to the documentational approach of didactics 

(Gueudet & Trouche, 2009, 2011). 

 

The Documentational Approach of Didactics 

Gueudet and Trouche (2009, 2011) have developed a theoretical research 

framework based on the premise that documentation work is at the core of teachers’ 

professional activity and professional change. Documentation work includes selecting 

resources, combining them, using them, and revising them. Even outside a particular 

reform or professional development program context, such work is deemed central to 

teaching activity. Gueudet and Trouche employ the term “resource” to describe the 

variety of artifacts that they consider – such as a textbook, a piece of software, a student’s 

work sheet, a discussion with a colleague. Like Adler (2000), a key aspect of Gueudet 

and Trouche’s (2011) approach is resource-in-use (in-class and out-of-class).   

One of the pivotal constructs of their theory is that ‘resources’ become 

transformed into ‘documents’ via a process of documentational genesis – a construct 
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inspired by and adapted from the parallel process in the instrumental approach whereby 

artifacts become transformed into instruments via instrumental genesis (Rabardel, 1995). 

The instrumental approach distinguishes between an artifact, available for a given user, 

and an instrument, which is developed by the user – starting from this artifact – in the 

course of his/her situated action. Similarly, a document is developed by a teacher, starting 

from a resource, in the course of his/her situated action. Gueudet and Trouche represent 

this process of documentational genesis with the following simplified equation, where the 

‘scheme of utilisation’ refers to the various personal adaptations that are made with 

respect to using the resource in accordance with a teacher’s evolving knowledge and 

beliefs (Gueudet & Trouche, 2009, p. 209): “Document = Resources + Scheme of 

utilization”. Documentational genesis is therefore considered to be a dialectical process 

involving both the teacher’s shaping of the resource and her practice being shaped by it. 

In their description of this theoretical approach and its accompanying 

methodological principles, Gueudet and Trouche (2011) emphasize the professional 

growth that is intertwined with documentational genesis. They argue that: 

Teachers “learn” when choosing, transforming resources, implementing 
them, revising them etc. The documentational approach proposes a 
specific conceptualisation of this learning, in terms of genesis. A 
documentational genesis induces evolutions of the teacher’s schemes, 
which means both evolutions of the rules of action (belonging to her 
practice) and of her operational invariants (belonging to knowledge and 
beliefs). Documentation being present in all aspects of the teacher’s work, 
it yields a perspective on teachers’ professional growth as a complex set of 
documentational geneses. (Gueudet & Trouche, 2011, p. 26) 

 
The study featured in this article, with its central focus on resources-in-use within 

actual teaching practice, draws upon salient aspects of the documentational approach of 

didactics. More specifically, our research question centered on uncovering key moments 
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of teacher awareness, particularly those of a mathematical nature, in the process of using 

new curricular resources in class. We begin with an a priori analysis of the curricular 

resources being used by a teacher for the first time, followed by detailed in situ 

observations of the unfolding of her teaching practice involving these resources. The 

analysis highlights the teacher’s growing awareness of the mathematical gaps in the 

resources she is using – conjectured to be a first step for her in the evolutionary 

transformation of resource to document, as well as an essential constituent of her ongoing 

professional development.  

 
Methodological Aspects of the Study 

The present study is situated within a multi-phase program of research whose 

current phase is the study of teaching practice in mathematics classes involving the use of 

digital technology in the teaching of algebra, in particular, the use of Computer Algebra 

System (CAS) technology. Previous phases of the research integrated tasks that had been 

designed by members of the research team (see, e.g., Kieran, Tanguay, & Solares, 2011). 

This phase examines teaching practice in technology-supported classroom environments 

where commercially-developed curricular resources, such as textbooks, are in use. 

Participants in this phase of the study included three teachers from three different 

public high schools. They responded positively to our request for volunteers who were 

using technology in their regular teaching of high school algebra and who would be 

willing to be observed and interviewed for our research study. We observed and 

videotaped each teacher’s practice for five consecutive days in all of their regular 

mathematics classes. We intended to capture, as much as would be possible under the 

videotaping circumstances, their natural teaching practice involving whatever resources 
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they had chosen to make use of. We also interviewed each teacher twice – once at the 

beginning of the week and once at the end. The analysis presented in this article focuses 

on the practice of one of the three teachers, Mae (a pseudonym), during one of her 

lessons of the week. 

Mae taught all three of the senior year (17-year-old students) mathematics classes 

in her school. She was one of the pioneers of her school on the use of technology in the 

teaching of mathematics. In her own classes, she regularly used a whiteboard hooked up 

to her computer and all students had CAS calculators available to them. She was 

technically very savvy and could respond easily to all students’ questions regarding the 

use of technology. Her academic background included a doctorate in education with a 

thesis on the use of graphing calculator technology. Her mathematical knowledge 

seemed, however, less developed than her technological skill. She made a regular 

practice of asking students to read ahead in the text because – as she mentioned during an 

interview – they would soon be graduating and had to learn to be autonomous adults who 

were responsible for their own learning. However, this practice also led students to pose 

questions of a mathematical nature that went beyond what they had been able to extract 

from their textbook. Such questions were not, in general, handled with the same expertise 

and knowledge base with which Mae handled their technological questions. 

The analysis of Mae’s teaching practice that we present in this article does not 

focus on her integration of technology into the teaching of mathematics, but rather on the 

mathematical content at stake in her lesson within the framework of the documentational 

approach of didactics (Gueudet & Trouche, 2009), a key construct of which is the 

evolutionary nature of documentational genesis whereby resources gradually become 



  TME, vol10, nos.1&2, p .169 
 

 
 

transformed into documents. The resources that Mae was using during the period in 

which our classroom observations occurred were new to her that year. The provincial 

curriculum guidelines had changed the year before and new textbooks were developed 

that would adhere more closely to the new guidelines. Mae tended to rely on both the 

student textbook and accompanying teacher guide to plan the mathematical content of her 

lessons. We were interested in following the process of her integration of these resources 

into her teaching practice, the way in which she was adapting and transforming them, and 

the way in which they might be co-transforming her practice and her knowledge – that is, 

in capturing the reciprocal nature of the documentational genesis that was occurring.  

Although the analysis we present in this article is focused on a very small part of 

Mae’s teaching practice, on one lesson in fact, the approach to our analysis is broader in 

scope. We begin with an analysis of the two text-based resources she used for her lesson 

on families of polynomial functions, tracing back in these resources to some of the earlier 

notions that served as foundation for the development of the lesson’s mathematical 

content. Then we analyze the videotape of the unfolding of the classroom lesson. This 

latter analysis attempts to draw out the dynamics and forces that came into play as the 

prepared mathematical content was elaborated in the classroom setting, examining in 

particular those moments that seemed critical to the further development of her teaching 

practice and to the evolutionary process whereby a resource becomes a document. The 

videotapes of the interviews with the teacher also serve to illuminate some of the 

underlying aspects of her teaching practice.  

 
Analysis of the Resources Used by the Teacher in Preparing her Lesson 
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polynomial without having to divide” (p. 95). No explanation is provided as to why the 

numerical evaluation  abP / , when it yields zero, should in fact be sufficient for 

determining a factor of the polynomial. However, the central issue for our analysis is the 

following: if  abP /  = 0, why write the factor in the form (ax – b) and not in the form of 

(x - b/a)? It clearly makes for an easier long-division calculation when written in the form 

of (ax – b). But what happens, mathematically speaking, when one expresses (x – b/a) as 

(ax – b)? Are the two forms equivalent? What mathematics is hidden in expressing the 

former form as the latter? How does one convert one form to the other and maintain 

equivalence? 

Subsequent pages of the student textbook expand on the Factor Theorem by 

means of two additional theorems, the Integral Zero Theorem (p. 97) and the Rational 

Zero Theorem (p. 100), illustrated in Figure 2. However, once again, no further 

explanation is provided for the case of the polynomial P(x) having a rational zero a/b, 

either as to why a should be a factor of the leading coefficient of P(x) or the issue 

regarding the form to be used for the factor of P(x) corresponding to the rational zero.  

 

Figure 2. The Integral Zero and Rational Zero Theorems 
(drawn from Erdman et al., 2008a, pp. 97 & 100) 
 

The textbook provides several examples that show the advantages of using these 

two latter theorems when the task is to find the factors of a polynomial. However, the 

relevance of writing the factor in the form (ax – b) when x = b/a is a root of the 
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polynomial P(x) is never discussed. This can have repercussions, didactically speaking, at 

the moment when the teacher introduces the theory underlying families of polynomial 

functions, coming up in Section 2.4. The intervening section 2.3, on the solving of 

polynomial equations, adds no further theory related to the Factor Theorem.  

Families of Polynomial Functions. Before giving a general definition of families 

of polynomial functions, the textbook offers several examples that illustrate that one 

obtains different members of the same family of polynomial functions for different values 

of the parameter k (see Figure 3 for one such example). 

 
Figure 3. Algebraic representation of a family of polynomial functions (drawn from 
Erdman et al., 2008a, p. 115) 

As is illustrated in Figure 3, the family of polynomial functions that has as zeros 2 

and –3 can be represented algebraically as )3)(2(  xxky . But, if we look at part (b) 

of the solution of this example, the information that is given suggests that different values 

of k yield different members of the same family of polynomial functions. This can lead 

those who are using this textbook as a resource to a false mathematical conception if they 
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do not distinguish the crucial role being played by the root of the polynomial in terms of 

whether it is a whole number or a rational. In other words, if the zeros of the polynomial 

are not whole numbers, but rather rational numbers, then the value of k can vary 

according to the form of the factor, without changing the member of the polynomial 

family. For example, if the zeros of a family of polynomial functions are 3 and –1/2, then 

the family has as its function )2/1)(3()(  xxkxP . And so, a member of this family 

is: )2/1)(3(2)(  xxxP , if k = 2. But if we write the factor )2/1( x  as (2x + 1), the 

value of k changes from 2 to 1 for the same member of the polynomial family, that is, 

1))(23(1)(  xxxP . The algebraic transformation involved in changing the form of 

the factor )2/1( x  to (2x + 1) is as follows: )2/1( x  = 2/2 )2/1( x  = 2/1 (2x + 1). 

Thus, the conversion of )2/1( x  to (2x + 1) involves also multiplying the rest of the 

expression by 2/1 , thereby yielding the new k-value of 1 (from multiplying the previous 

k-value of 2 by 2/1 ). This example shows that, if we have a family of polynomial 

functions expressed algebraically as ,0,,)...())(()( 21  kkaxaxaxkxP n  we 

cannot say that different values of the parameter k necessarily imply different members of 

a given family of polynomial functions, unless of course all the zeros are whole numbers. 

 
The examples provided in the textbook are then followed by the general definition 

of families of polynomial functions (see Figure 4).  
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In fact, the guidance noted in Figure 5 where students are to be encouraged to use 

fractions and not decimals is contradicted in another suggestion within the same resource 

a few lines later (see Figure 6). 

 

 
Figure 6. An explicit suggestion in the teacher guide (Erdman et al., 2008b, p. 52) to 
write all factors involving rational zeros in the form )( bax   
 

The advice displayed in Figure 6 is not accompanied by any justification for the 

use of the form (ax – b), nor is there any discussion as to how a teacher might respond to 

potential students’ questions regarding the issue as to why they are to use the form 

)( bax   and not (x – b/a). In fact, the teacher is not even alerted to the possibility that 

such a question might arise. Additionally, no explanation is provided as to why “all 

equations should be expanded and simplified.” Question 10, to which the suggestion 

given in Figure 6 refers, reads as follows: Determine an equation for the family of quartic 

functions with zeros –5/2, –1, 7/2, and 3. In accordance with the directive given in Figure 

6, the equation for the given family of quartic functions ought to be written as 

).3)(72)(1)(52()(  xxxxkxP  But an obvious question is why one might not 

instead write the function in the following form:     ).3(2/7)1(2/5)(  xxxxkxP
 

 
Analysis of the Unfolding of Mae’s Lesson on Families of Polynomial Functions 

The mathematical problem on which Mae had decided to focus in her lesson on 

families of polynomial functions was one that involved a rational root. It was a variation 

of an example that was worked out in the student textbook (see Figure 7). 
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After students had spent some time trying to find appropriate graphing windows, 

Mae asked them what common characteristics the functions shared. One student 

mentioned that they were all of degree three and another that they had the same 

x-intercepts. Following up on the latter idea, Mae asked if they were able to tell from 

looking at the given expanded forms that the three functions had the same x-intercepts. 

“So how could you make it more obvious?”, she asked. When one student suggested 

“factoring them”, Mae responded: “Yes, when you factor them, you have your function in 

a form where you can easily see that the x-intercepts are similar.” She then asked students 

to split their graphs page in two so that they could insert a calculator page for the 

factoring of the three functions. It is noted that a certain amount of time was devoted to 

taking care of technical aspects of the CAS, such as splitting a page in two and then 

copying the three functions to that page.   

 
The factored form of the three functions was as follows: 

)3)(1)(2(2)(1  xxxxf    

)3)(1)(2()(2  xxxxf  

)3)(1)(2(5.2)(3  xxxxf  

 
Mae then continued with her lesson, as illustrated by the following extract of 

classroom dialogue. It was soon to lead to the problem associated with a factor that 

corresponds to a given rational zero. 

Teacher: So, in factored form, right away you can see that they all share –2, 1, and 

3 as x-intercepts. So, if you are looking at all of these three graphs and they all share the 

x-intercepts, why do they look so different on your graphs page? 

Student1: Coefficients and translations. 

Student2: Leading coefficients. 
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Teacher: So you can express it in different ways: leading coefficients, stretches, 

compressions. OK, so if you look at the leading coefficients, there’s a two in one of them, 

negative one in the other one, and negative two point 5. Alright. 

So, this section (2.4) is titled, Families of Polynomial Functions. And by 

definition if you have polynomial functions, all with the same x-intercepts, they’re within 

the same family. Is everyone OK with that? 

So another way I can ask you questions would be something like this. So here 

[referring to the whiteboard where the general form for families of polynomial functions 

was displayed: ))...()()(()( 321 naxaxaxaxkxf  , where k , 0k ] is the 

basic definition of the functions you were dealing with before, where if you have all the 

zeros, all the x-intercepts being the same, and the only thing that differs is your value – 

and here they label it k – in front, basically you can say that this family of polynomials, 

they share the same characteristics, they’re in the same family.   

Then I can ask you something like question #3 [which was then displayed on the 

whiteboard]: 

A function has x-intercepts –3, –(1/2), 1, and 2, with point (–1, –6) on the 

function. Determine the equation of the polynomial function. 

What #3 is asking you to do, you’re given specific x-intercepts, they want you to 

find the equation of the polynomial function. But along with the four x-intercepts, they 

also give you a point. What do you think the point is going to help you determine? 

Student1: the k.  

Teacher: Right, the k. Thank you very much. So try to give me the equation of the 

polynomial function. And remember there are two ways to present the equation of a 
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The other students who were working at the board used a similar form for the 

second factor. This was clearly a reflection of the work they had done earlier in the week 

on the Factor Theorem. Despite the fact that Mae had just a few minutes earlier 

mentioned that they all should employ the general form, whose factors were of the form, 

ax  , she did not remark on the students’ use of the form bax  . It conformed, after all, 

to the form suggested in the teacher’s guide. The student, after substituting-in the 

coordinates of the point for the x’s and f(x), obtained the result of 2/1  for k. So too did all 

of the others who were showing their work at the board. The various erroneous values 

that they had earlier obtained for k were self-corrected.  

 
Teacher: Well, so, we all got a half. So you all determined your polynomial 

function equation all in the same way. Did anyone happen to write their function 

differently? 

Student1: Well, you could expand your function first and then plug it in. 

Teacher: Actually, that’s correct. So, it actually turns out to be the same thing. But 

did anyone write this part differently [pointing to the four factors of the expression]? [No 

one said anything]. So, everyone was able to write their factors as either x plus or minus 

b, or ax plus or minus b. Is everyone OK with that? 

Student3: Why can’t you use )5.0( x  for the x-intercept of 2/1 ? Like for 

)12( x . 

The teacher seemed unsure as to what Student3 was proposing. So, she asked him 

to come forward to write it at the board, which he did: [he wrote 5.0x ]. 
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Teacher: Ooh! Very good question. So. Let’s all try this. Instead of using )12( x

, use )2/1( x . Tell me what happens when you use )2/1( x  instead of )12( x . 

Student 4: You get 1. 

Teacher: OK, you get 1. So you get something completely different. Right. So 

why do you get something completely different? 

Student 5: Divide that part by 2 and then write in the rest of it [clearly referring to  

the 12 x , but his technique was not clearly and completely stated].  

Teacher: OK, good [without expanding on the student’s partial suggestion], so 

your entire expression is actually completely different. 

 

Here in lies the crux of the mathematical difficulty. The teacher appears to see the 

function with its different value of k as another member of the family of polynomial 

functions, and not as the same member: that is, that )2)(1)(12)(3(2/1)(  xxxxxf  

and )2)(1)(2/1)(3(1)(  xxxxxf  are two different members of the same family. 

We reiterate that neither of the resources she was using had led her to think otherwise. 

She attempted to explain this phenomenon to the class in the following manner, focusing 

on the fact that the zeros were the same, but the k’s were different: 

 

Teacher: So your x-value here [in 2x + 1] is –1, so when you go 2 times –1 plus 1, 

you get –1. But when you put –1 in here [in 2/1x ] plus 2/1 , you get 2/1 . Right, so 

you get two totally different values, so your k will be different.  

Student1: Isn’t that also right though? 
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Teacher: Is this [pointing to 2x + 1] a different intercept from this [pointing to 

2/1x ]? We have 2x + 1 and 2/1x  [she writes on the board 012 x  and 

02/1 x ]. So, what does x equal in the two cases? So, they’re the same answer, right 

[i.e., the same zero or x-intercept]. But we’re getting different values [for each] because, 

in 012 x , you double something and then you add, and in this [ 2/1x ] you just add 

something. So, according to the order of operations, you get different values of k here. 

Right. 

Student6: So how do you know it’s not )24( x , because the x-intercept is still 

2/1 ? 

Teacher: That’s very good, but you actually don’t know that. You don’t know if 

that would be )24( x . Although again what you’re trying to do is figure out what kind 

of leading coefficient you have there. OK.  

 

Mae’s ‘explanation’ of the phenomenon at hand showed her to be oblivious at that 

moment to any consideration that the two algebraic forms might be equivalent. If she had 

realized that the factoring of )12( x  as )2/1(2 x , followed by the multiplication of the 

2 with the k-value of 2/1 , would yield an equivalent second form of the given 

expression, the problem might have been resolved. Furthermore, Student6’s question 

regarding the possibility of using )24( x  for the )12( x  factor (or any of an infinite 

number of other possibilities for the factor representing the x-intercept of 2/1 ) might 

have been discussed in terms of there being no difference whether one uses one form of 

the factor or another, because the resulting different value of k would maintain the 

equivalence. The following are all equivalent: )2)(1)(2/1)(3(1  xxxx ; 
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)2)(1)(12)(3(2/1  xxxx ; )2)(1)(24)(3(4/1  xxxx ; and so on. They are all 

the same member of a certain family of polynomial functions, despite their having 

different k’s. Mae’s distinction between different members of the same family, based on 

the criterion of having different k’s, had failed to take into account the role played by 

different possible forms of a factor that represent the same x-intercept, or zero, when it is 

a rational number. The textbook resources she had just begun to use had not alerted her to 

this phenomenon. 

As if to prove her point about the two functions being distinct members of the 

same family, Mae then suggested to the class that they expand the two – but was 

somewhat taken aback by the result. When the expanded results came out to be the same, 

the teacher wondered aloud if she had not mistakenly entered the same expression twice 

into her computer, which was hooked up to the whiteboard. The following classroom 

discussion ensued. 

 

Student1: Even though the k is different, it is still the same thing. Whatever you 

do to the factor, you are also doing to k [not quite correct, but on the right track] 

Teacher: I am not sure that you are all following this. For the second one, we got 

a different value of k. And what do you find when you do it [that is, expand the 

expression: )2)(1)(2/1)(3(1  xxxx ]? 

Several students at once: The same thing! 

Student1: Witchcraft! 

Teacher: [recovering somewhat from her surprise, but still at a loss for words] 

Does it make a difference? [Looking around the class] Do you understand why that, even 



  TME, vol10, nos.1&2, p .185 
 

 
 

though, because of how you are phrasing the question, or your factors, you are going to 

get your different values of k. Remember some people were saying that when you expand 

it, you should still get the same thing anyway [what had actually been suggested earlier 

by one of the students was related to expanding just one expression that was in factored 

form and not expanding two seemingly different expressions]. Well, when you expand it 

[the two seemingly different factored forms], you can see that the functions are still the 

same. Generally, we do use the bax   form, but obviously you can see that we are 

dealing with the same function. Right. So thank you very much for your question, 

Student3. 

 

At this moment, the teacher quickly brought her lesson on families of polynomial 

functions to an end. The mathematical issues that had arisen clearly required further 

reflection on her part.  

 
Discussion 

The issues we wish to discuss here are threefold: the mathematical gaps of 

textbook resources, the process of becoming aware of and overcoming these gaps which 

constitutes a form of ongoing professional development for a teacher, and the 

evolutionary nature of documentational genesis whereby resources gradually become 

transformed into documents.   

The new textbook and teacher guide that Mae had used as resources for her lesson 

had not provided the level of mathematical support that she needed. They had not alerted 

her to the issues surrounding the two forms of a factor representing a given rational zero 

of a function, and the accompanying impact on the value of the parameter k. The 
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resources had been silent about both the technique for converting from one factored form 

to another and the equivalent nature of the two. Chevallard and Cirade (2010) have 

discussed the question of missing mathematical resources and have identified this as a 

major praxeological problem for the profession.  

It was in the act of teaching her three classes on a given day that Mae became 

aware of the mathematical deficiencies of the textual resources with which she had 

prepared her lesson on families of polynomial functions. She had not been equipped to 

handle the questions put to her by her students and had to react on the fly in an ad hoc 

and inadequate fashion. Nevertheless, she seemed to learn from the experience. 

Zaslavsky and Leikin (2004) have pointed out that, by listening to students and observing 

their work, and by reflecting on this work, teachers learn through their teaching. Mason 

(1998) has emphasized that it is one’s developing awareness in actual teaching practice 

that constitutes change in one’s knowledge of mathematics and mathematics teaching and 

learning. 

By taking seriously her students’ questions regarding the relationship between 

two seemingly different factored forms of a function, Mae became sensitized to 

mathematical aspects of the given area of study that she had not heretofore considered. 

Her knowledge of families of polynomial functions was in the process of being 

transformed by what transpired in her class, especially by the thought-provoking queries 

of her students. According to Zaslavsky and Leikin (2004), such in-practice activity can 

be an effective vehicle for teachers’ own professional growth. Although Mae’s primary 

preoccupation was the teaching of the material on families of functions, she was at the 

same time engaging in the problem that she was putting to the students. She, with the 
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collaboration of her students, was developing her knowledge of the mathematics of this 

area.  

In their theoretical paper on documentation systems for mathematics teachers, 

Gueudet and Trouche (2009) introduce a general perspective for the study of teachers' 

professional evolution, where the researcher's attention is focused on the resources, their 

appropriation and transformation by the teacher or by a group of teachers working 

together. Their approach aligns with Adler’s (2000), who claims that, “in mathematics 

teacher education, resources in practice need to become a focus of attention” (p. 221) and 

with Remillard’s (2005) whereby the evolution of the curriculum material actually used 

and a teacher's professional development are viewed as two intertwining processes.  

With respect to this intertwining process, Gueudet and Trouche (2009) point out 

that: 

A teacher draws on resource sets for her documentation work. A process 
of genesis takes place, producing what we call a document. … A given 
teacher gathers resources: textbooks, her own course, a previously given 
sheet of exercises... She chooses among these resources to constitute a list 
of exercises, which is given to a class. It can then be modified, according 
to what happens with the students, before using it with another class 
during the same year, or the next year, or even later. The document 
develops throughout this variety of contexts. (p. 205) 

 
We suggest that the awarenesses acquired by Mae in her teaching of families of 

polynomial functions with new resources will be instrumental in enabling her to modify 

these resources, thereby leading to the gradual transformation of a resource into a 

document for her. However, Gueudet and Trouche (2009) emphasize that 

“documentational genesis must not be considered as a transformation with a set of 

resources as input, and a document as output. It is an ongoing process … that continues in 

usage. We consider here accordingly that a document developed from a set of resources 
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provides new resources, which can be involved in a new set of resources, which will lead 

to a new document etc. Because of this process, we speak of the dialectical relationship 

between resources and documents” (p. 206).  

We close our discussion by turning to a relevant comment made by Adler (2000) 

that puts the focus not on producing more (or better) resources, but rather on better 

understanding how teachers use the resources they have, change them, and in the process 

engage in a form of ongoing, personal, professional development: “Our attention shifts 

away from unproblematised calls for more [resources] and onto the inter-relationship 

between teacher and resources and how, in diverse, complex contexts and practices, 

mathematics teachers use the resources they have, how this changes over time, and how 

and with what consequences new resources are integrated into school mathematics 

practice” (p. 221). In this article, we have attempted to illustrate the complex 

interrelationship within actual teaching practice between a teacher and a new set of 

resources, by describing the nature of the classroom experiences whereby a teacher 

becomes aware of the mathematical gaps of new resources and thus better positioned to 

make changes to them over time. Such an approach both situates resources and their 

adaptive use within a documentational framework and re-centers professional 

development within the actual practice of teaching. 
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Abstract: The aim of this article is to consider the professional knowledge and 
competences of mathematics teachers in compulsory education, and to propose basic 
tasks and activities in an initial training programme in the framework of a global proposal 
for “Immersion” in the curriculum of the educational phase which the trainee teacher 
would go on to work in. Problem-solving, in this context, is considered as being an 
inherent part of mathematics and this  is described in terms of problem-solving, 
establishing connections between concepts, operations and implicit processes in the 
mathematical activity (conceptual field) and their relationships problem-solving; and it is 
assumed that the learning of problem-solving is an integrated part of learning in 
mathematics.  
 
Keywords: Problem Solving, Teacher Training, Didactical Analysis, Semiotic Logical 
Approach (SLA). 
 

 

Introduction 

The analysis of the results obtained, in recent years, in different national (in 

Spain) and international assessments shows that the knowledge of mathematics (Problem 

Solving) of students in compulsory education (K-9 Grades) is insufficient in terms of the 

desired curriculum. What needs to be done to improve the learning and teaching of 

mathematics and, in particular problem solving in this educational stage? This question is 

addressed here by reflecting on the role played by teachers in primary and secondary 

education in the pursuit of an effective learning of mathematics and problem solving. At 

present, the initial training of teachers in primary and secondary education takes place 
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within the European Higher Education Area, where primary school teachers need four 

years training and secondary school teachers are required to have completed a mandatory 

Professional Masters degree. This initial teacher training has a great opportunity for 

improvement. 

 

Problem solving in mathematics education 

Problem solving has always been regarded as a basic component in the 

construction of mathematical culture. However, when mathematical knowledge is 

presented in its final state, what prevails is the conceptual organization of the objects of 

such knowledge in which problem solving appears again as a core of relevant 

mathematical knowledge. In the early eighties, in view of the primacy of the concepts and 

their properties as well as their algorithmic use, problem solving was vindicated as a key 

activity in the learning of mathematics, which has led to the development of an emerging 

theoretical and practical body of research in mathematical education, and a notable 

increase of its presence in the curriculum, either as a further block of contents or as cross 

content but specific to mathematics at the corresponding level (Santos-Trigo, 2007, 

Castro, 2008). The follow-up research on problem solving clearly shows that, despite all 

amount of effort, there are no significant data on the improvement in this on the part of 

the students and different questions arise ranging from the need to establish relationships 

and existing connections between the development of the understanding of mathematical 

contents and problem solving skills, to the need of having theoretical bases to guide 

problem solving (Lester and Kehle, 2003). 
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Some authors such as Lesh and Zawojewski (2007), suggest that the rise of 

research in problem solving was very important between 1980 and 1990, and that some 

trends are presently aimed at putting an emphasis on critical thinking, technology and 

mathematical problem solving, and analysis of how mathematics is used in other sciences 

and professions that does not match the way mathematics is taught in school, or the 

development of problem solving in other settings or contexts such as situated cognition, 

communities of practice or representational fluency. These directions and perspectives in 

solving mathematical problems are, at the present, promising lines of research. 

 

The knowledge and professional skills of a mathematics teacher 

The concern, from the point of view of mathematics education, regarding 

teacher’s knowledge and professional skills has been and is, a constant research topic, 

and is based on the following conjecture: The knowledge and professional skills of the 

mathematics teacher must be acquired through different scientific domains: mathematics, 

mathematical didactics and educational sciences. The initial teacher training should 

enable the trainee teachers to increase their knowledge about mathematics and 

mathematical didactics as a specific field of professional competence (mathematics 

education) and a field of research, along with other issues arising from educational 

sciences. 

Shulman pointed out in 1986, for the first time, the importance of the specific 

subject to teach in teacher training. This author identified three categories of professional 

knowledge of teachers: Knowledge of the specific subject, pedagogical content 

knowledge (PCK) or in the context here: the didactical content knowledge (DCK) and 

curricular knowledge. Subsequently, Bromme (1988, 1994) described the qualitative 
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characteristics of the major areas of professional knowledge: Knowledge of mathematics 

as a discipline, knowledge of mathematics as school subject, philosophy of mathematics 

schools, pedagogical knowledge and specific pedagogical knowledge of mathematics. 

The author proposed that the teachers' professional knowledge is not simply a 

conglomeration of these domains of knowledge, "but an integration of the same", which 

occurs during teaching practice or during professional teaching experience.  

 

Semiotic Logical Approach (SLA). Assumptions 

Semiotic Logical Approach (SLA) (Socas 2001a and b, 2007), when understood 

as a theoretical-practical proposal (formal-experimental), aims to provide tools for the 

analysis, description and management of problematic situations or phenomena of a 

mathematical didactical nature from a perspective based on semiotics, logic and 

competence models (semiosis), and takes one of the great problems of mathematics 

education, the study of difficulties and errors of students in learning mathematics as a 

reference (Freudhental, 1981). Logical and Semiotic Aspects of SLA uses Peirce's 

Phenomenology (1987) as a reference. Peirce, starting from the logic conceived of as a 

science of language, describes the development of a science of signs and meanings called 

semiotics which can be used to analyse, within the semiotic constructs, different 

phenomena of logic, mathematics, physics and even psychology, which is why this 

phenomenology is used here. Semiotics is a theory of reality and knowledge that one can 

have of phenomena through signs which are the only means available. Semiotic inference 

emerges in sign analysis where what is analysed are the trademarks or observable and 

overt expressions of inference, which Pierce organized as a logical theory (semiotics) that 

has three references closely linked to one another. Therefore, if the aim is to study any 
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phenomenon (problem situation), which is the starting point in SLA, this will always be 

analysed from a given context and by means of three references organized as first, second 

and third, which is defined as primary or basic semiotic function which is determined by 

the sign, object and meaning references (Socas, 2001b). This can be used to determine 

the notion of representation as the semiosis determining such references. Therefore, the 

representation is a sign that:  

(1) has certain characteristics that are proper (context)  

(2) sets a dyadic relationship with the meaning 

(3) establishes a triadic relationship with the meaning via the object, this triadic 
relationship being such that it determines the sign of a dyadic relationship with 
the object and the object to a dyadic relationship with the meaning (Hernández, 
Noda, Palarea and Socas, 2004). 

As far as the Educational System is concerned, SLA uses the Begle’s diagram of 

school mathematics as a reference, which shows the mutual relationships between the 

different components in the training process and defends the need to set multiple 

perspectives and procedures in the field of the teaching / learning of school mathematics 

(cited in Romberg, 1992). To do this, two different parts must be distinguished: the 

"educational macro system", where both disciplinary knowledge and the institutions or 

persons involved intervene in the education system, and, the "educational micro system", 

which is made up of three references or basic elements: mathematical knowledge 

(mathematics), students and teachers, and their relationships in a context determined by 

the following components: social, cultural and institutional, which is shown in the figure 

below: 
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Figure 1:  Elements of educational micro system 

The three essential relationships are: 

Relationship1: Between the mathematical knowledge and the student, which is 

called "school mathematics learning as a conceptual change". 

Relationship 2: Between the mathematical knowledge and the teacher, called: 

"adapting the curricular mathematics content to be taught". 

Relationship 3: Between the mathematical knowledge and the teacher via the 

student which is called: "interactions". 

Thus, the three elements and the three essential relationships contextualized in the 

three components of the context determine the teaching / learning process in the regulated 

systems, thereby characterizing the six core contents that are a part of the mathematics 

teacher's professional knowledge, in addition to those derived from the three previous 

mentioned relationships: mathematical knowledge in a disciplinary sense, the curricular 

mathematics knowledge and the mathematics curriculum of an educational stage. It is in 

this framework that the difficulties, obstacles and errors that students have or make in the 

construction of mathematical knowledge are examined. SLA organizes three models of 

competence: Formal Mathematical Competence (FMC), Cognitive Competence (CC) and 

Teaching Competence (TC), which constitute the references that define the General 
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Semiosis which plans and manages research in the educational micro system (Socas, 

2010a, 2001b, 2007 and 2010).  

This General Semiosis can be used to plan and manage both the problems of 

teaching and learning in the educational micro system, and the didactical mathematical 

problems to be studied.  

The Formal Mathematics Competence Model (FMC) can be used to describe the 

conceptual field of the mathematical object in the thematic level in which both their 

functions and phenomenology are being considered.  

The Cognitive Competence Model (CC) is the second reference and takes into 

account the above mentioned Formal Mathematic Competence Model, it refers to the 

specific cognitive functions of students when they use the mathematical objects in 

question and structural aspects of learning.  

The Teaching Competence Model (TC) is the third reference, and it also considers 

the above mentioned aspects (formal mathematical competence and cognitive 

competence) and describes the actions of the subjects involved, the communication 

processes, the mediators, the situations, the contexts, which occur in education.  

Three basic assumptions of SLA are now proposed here: Mathematical Content 

Analysis, Didactical Analysis and the Curricular Organization. 

The didactical analysis and the curricular organization are the concepts that SLA 

uses to characterize the knowledge of mathematical content from the professional point 

of view. The didactical analysis allows the comprehension of the professional problem, 

while the organization curricular plans his development. 

 

Mathematical Content Analysis  
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The Formal Mathematics Competence Model (FMC) sets out the conception of 

mathematical literacy and the different relationships between the elements characterizing 

it. The FMC is organized by means of the semiosis that characterizes and relates the 

conceptual, phenomenological and functional aspects of mathematical content involved 

in the problematic situation to be addressed in the educational micro system, and would 

appear as below: 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Domains of mathematical activity 

The different domains of mathematical activity are expressed within this model in 

relation to the conceptual field from a formal perspective and its different relationships, 

i.e., it describes the duality of mathematical objects in relation to conceptual/procedural 

mathematical knowledge of the field in question. Any activity is described in relation to 

the three components: operations, structures and processes, and relationships, which we 

explain later. Each component, in turn, is determined by three others that describe a new 

semiosis:  1) The operations component for the semiosis: operations, algorithms (rules) 

and techniques, 2) the structures component for: concepts (definitions), properties and 
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structure, and 3) the processes component for: formal substitutions, generalization and 

modelling. This organization of the conceptual fields is contextualized in the problematic 

situations that are addressed in the language (representations) and in the arguments 

(reasoning) that are used in developing it.  

The three context components are similarly determined by the respective 

semiosis. In the case of problematic situations: identification, approach and resolution; in 

representations (language): recognition, transformation (conversion) and elaboration 

(production), and in arguments: description, justification and reasoning. This organization 

of mathematics by the FMC can be used to consider problem solving as an inherent part 

of mathematics and to describe it in terms of problem solving. Hence, the following 

aspects characterize mathematical culture in SLA:  

1. Mathematics is a multifaceted discipline 

2. Mathematical culture emerges and develops as a human activity of problem 

solving 

3. The problems have one common feature: the search for regularities 

(identification, approach and resolution). Modelling is the mathematical process 

par excellence 

4. Mathematical culture creates a system of signs able to express regular 

behaviour 

5. The set of regularities is organized into conceptual fields 

6. The conceptual elements of these fields are mathematical objects 

The Formal Mathematical Competence Model can also be used to establish the 

connections between concepts, operations and processes involved in mathematical 
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activity and their relationship to problem solving, which is, generally speaking, relevant 

for mathematics education, and particularly for problem solving.  

 

Didactical Analysis in the Semiotic Logical Approach (SLA)  

Semiosis can be used to identify and understand the didactical mathematical 

problem, whose reference framework is comprised of the curriculum organizers (Rico, 

1997) and the initial notion that Freudhental (1983) put forward for didactic analysis as 

follows: "the analysis of the curricular content of mathematics is performed to serve the 

organization of its teaching in educational systems". 

Didactic analysis is organized according to the following triad: formally described 

curricular mathematics, semiotic representations and difficulties, obstacles and errors, it 

also facilitates the identification and understanding of the didactic problem to be 

addressed.  

Didactic analysis implies, in relation to the curricular component, a review of the 

curricular contents from the formal perspective: operational, structural and processual 

(using processes), but also implies a necessary relationship with the students linked to 

their interests and motivation. 

The semiotic representations component involves a review of the curricular 

content in relation to different forms of representation of the objects in question, as well 

as the presentation of information to students. The following states of the historical 

development of the mathematical object are considered in this section: semiotic, 

structural and autonomous, that also implies a necessary relationship with the students 

linked to the coordination between the forms of expression and representation and the 

interests and motivation of the students. The component difficulties, obstacles and errors, 
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require a review of the curricular content in relation to these three aspects, with a dual 

aim of prevention and remedy, making it possible, for example, from the perspective of 

prevention, to set the levels or cognitive skills required of students in relation to the 

mathematical object in question. The identification of the errors generated by the students 

needs analytical tools which can get into the complexity of learning difficulties in 

mathematics. One way to address this would be, as reported by Socas (1997), to take the 

three directions of analysis into consideration, like three coordinated axes which would 

more accurately identify the origins of the error and would enable the teachers to devise 

more effective procedures and remedies. These three axes would be determined by their 

origin: i) in an obstacle, ii) in the absence of meaning; iii) in affective and emotional 

attitudes.  

 

Curricular Organization 

Not only do mathematics teachers need knowledge about the discipline of 

mathematics and the curriculum, but they also require didactical mathematical knowledge 

(DMK) in order to organize the mathematical content for teaching.  

This is professional knowledge that includes the appropriate elements of analysis 

to understand, plan and do a professional job. The teacher needs to expand and connect 

different perspectives on the curricular mathematics content, in such a way that its 

consideration is not only from the internal logic of the discipline, which may emerge as 

being too restrictive, formal and technical, but from the curricular dimension, a more 

open perspective and one which integrates the teaching of mathematical knowledge more, 

and this is not possible to put into practice from only the theoretical consideration of 

knowledge about the discipline of mathematics and the curriculum, to convert this into 
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the mathematical knowledge to be taught. This professional knowledge develops in the 

subject Didactic of the Mathematics for teachers, structured according to the didactical 

analysis and the curricular organization. 

The curricular organization emerges from the organizers of the curriculum (Rico, 

1997), and must be understood as those teaching skills that can be used to plan 

mathematical content for teaching, i.e., planning and evaluating mathematics classroom 

schedules, which is determined by the following triad: context, teaching/learning and 

assessment.  

In so far as the context reference is determined by the semiosis described by the 

problem situation, which refers to the environments in which the activities take place, the 

contextualization, which is determined by the specific goals, specific skills and teaching 

content involved in the activity, and the levels, referring to the complexity of 

mathematical tasks: reproduction, connection and reflection, skills demanded by the 

same, taken from the PISA Project (Rico and Lupiáñez, 2008), or to stages of 

development: semiotics, structural and autonomous, taken from SLA (Socas, 1997). 

 

Proposal for training mathematics teachers  

The different areas of knowledge (mathematical and didactical mathematical) that 

can be used to support the training proposal have been described here in general terms. 

But before going on, it is necessary to make a few comments about the trainee teachers 

who this training proposal is aimed at. Several studies conducted at the University of La 

Laguna (Spain), in which students from several other Spanish universities have also 

participated, show that the students who start teacher training courses in primary 
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education teaching have huge gaps in basic mathematical knowledge. As regards problem 

solving, the situation is that 18 year old students, with more than 12 years of studying 

mathematics in the educational system and learning to solve problems, still tend to 

concentrate on the data of the problem as their general cognitive strategy, without 

demonstrating a clear understanding of the problem and without identifying operational, 

structural (conceptual) or processual relationships, given in the data, often providing 

solutions that cannot be valid for the conditions of the problem, which furthermore 

clearly shows a lack of cognitive strategies (heuristic methods) and a lack of critical 

thinking (Palarea, Hernández and Socas, 2001; Hernández, Noda, Palarea and Socas, 

2002 and 2003). Subsequent studies show no improvement on the previous results, 

finding that students show a predominance of operational rather than structural and 

processual thinking, and it is this thinking that is mostly behind the solution to any 

mathematical task, which many times is unsuccessful, even when the applied operational 

knowledge is correct. This suggests that the emphasis that the teaching of mathematics 

puts on operational knowledge may be creating difficulties and obstacles for the student 

to apply, for example, heuristics and strategies to solving problems that are more 

associated with structural and even processual thinking, which creates difficulties in 

achieving mathematical competence (Socas et al., 2009). 

As regards trainee teachers of mathematics in secondary education, the starting 

assumptions were that the design of the plan should take two essential aspects into 

account, on the one hand the mathematical training of future teachers (graduates in 

mathematics) and, on the other hand, the lack of a specific didactic training for 

professional work (teacher), except for that formed by existing knowledge, implicit 
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theories, values and beliefs that had come from their experiences as students of 

mathematics during their schooling, and which are, in many cases, an obstacle to properly 

channelling many aspects of professional thinking. The analysis of educational reforms 

leads one to believe that such reforms require the teacher to be able to take on the new 

curriculum changes which actually means confronting new tasks. The latter necessarily 

implies significant changes in training mathematics teachers which can be summarized in 

the following points: 

- Scientific and educational training tailored to this new curricular change. 

- Training to work with students who have a high degree of heterogeneity in basic 

skills, interests and needs. 

- A change in attitudes among teachers so that they can develop the educational 

aspects of teaching, adopt flexible approaches and delve into a more interdisciplinary 

vision of culture.  

- A conception of the curriculum as a research tool that can be used to develop 

concrete methods and strategies of consolidation and adaptation. 

- Assessment and exercising of teamwork as well as the development of a strong 

professional autonomy (Camacho, Hernández and Socas, 1998). 

 

Fundamentals of the Proposal 

The analysis of the knowledge and skills that a maths teacher must have in 

compulsory education, shows that two essential questions need to be answered: What are 

the basic tasks and activities in an initial training plan for maths teachers in compulsory 
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education? And whether the theory and practice dichotomy is enough to provide a 

response to the tasks and basic activities of teacher training?  

Llinares (2004, 2009 and 2011) proposes the articulation of three systems of 

activities or tasks to develop the knowledge and skills of a mathematics teacher: 

"Organise the mathematical content to teach it", "Analyze and interpret the production of 

the students" and "Manage the mathematical content in the classroom". A reflection and 

analysis of the two questions leads one to consider that the three aforementioned 

activities systems are at least necessary. These are the activities that also emerge as 

necessary and essential in all three relationships in the Semiotic Logical Approach 

(Socas, 2001a and 2007). As for the second question, one can see the need to make 

progress in the dichotomy between theory and practice with knowledge to develop the 

professional skills to design and manage teaching practice in mathematics. The general 

aspects of the basic proposal take the following as a reference: the analysis of 

mathematical content, the didactic analysis of curricular content and organization. This is 

a comprehensive proposal for the training of mathematics teachers, which aims to 

facilitate a reconciliation between disciplinary mathematical knowledge (DMK) to 

curricular mathematical knowledge (CMK), to pedagogical mathematical knowledge 

(PMK) and knowledge of educational practice (KEP). This can be achieved by means of 

a proposal that ranges from the general comprehensiveness of the curriculum and of the 

disciplinary mathematical knowledge, to the organized totality of curricular content as 

content to be taught. The situation is depicted in the graph below, which expresses the 

cyclical nature of the proposal. 
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Figure 3: Proposal for the training of mathematics teachers   

The analysis of the mathematical content plays a role, in this proposal, in the re-

teachers’ conceptualization of mathematics, and together with the didactic analysis of 

curricular content and organization, in the development of the school subjects of the 

didactics of mathematics and teaching practice of mathematics, where the three 

previously mentioned professional activities have a place. 

Professional activity will be considered first, "organizing the mathematical 

content to teach it". This deal with solving a professional problem that requires analysis, 

understanding and planning, and can be represented by the following semiosis: curricular 

mathematical content, disciplinary mathematical content, and mathematical content for 

teaching.  

First, the teacher needs to organize the curricular mathematical content (CMC), 

the desired mathematical content that is definable in the domain of the disciplinary 

mathematical content, although it is not organized under that logic. This CMC is 
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extracted via precise and precise mechanisms and organizations from the disciplinary 

content and is inserted in the curriculum. Once these actions have been performed by 

different elements of the educational system, curricular mathematical content knowledge 

is intrinsically different to the disciplinary knowledge, at least in its epistemological 

aspect, and supports interpretations from different perspectives, for example functional, 

as part of a common basic culture (Rico and Lupiáñez, 2008), the second derives from 

the discipline itself, scholarly mathematical knowledge, which we call disciplinary 

mathematical content (DMK) or formal mathematical knowledge (Socas, 2010a) and the 

third is the mathematical content for teaching (MCT), which includes both the taught and 

the mathematical content assessed (Hernández et al., 2010). The three components are 

interrelated in a process called transposition or adaptation of mathematical content, but 

have their own independent organization. The organization of curricular mathematical 

content comes from a pedagogical order implicit in the curriculum designers, and is 

associated with basic mathematical competence as part of a common culture. The 

organization of the mathematical content for teaching is compiled using the didactic order 

as a starting point, and is associated with the subjects’ competence in didactical 

mathematical knowledge (DMK) and determines the sequence and level of the 

mathematical content in the teaching proposal with regard to basic mathematical skills 

and the other basic skills.  

The professional task of organizing the mathematical content for teaching 

involves competence in the three areas of mathematical content. The question is now 

what happens to our students and how does one involve them in professional tasks that 

enable them to be competent professionals who can identify, analyze, understand and 
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plan for these three areas of mathematical content? As has been shown, students who 

begin teacher training for primary school have huge gaps in basic math skills which is 

why they need a revision of the discipline in terms of some "mathematics" to train them 

professionally, to improve not only their knowledge but their beliefs about the ends of 

this knowledge in compulsory education (Socas et al., 2009). 

 

Mathematics for teachers in compulsory education 

Teacher training programs have generally been designed to include in subjects, 

like mathematics, mathematical content as disciplinary knowledge, which is developed 

by explicating the different conceptual fields, and by considering mathematics as a 

fundamentally instructive tool that is organized primarily from the point of view of its 

internal logic, which means characterizing mathematical knowledge by using an 

organization based on its key concepts and on an introduction using a logical sequencing, 

i.e. the material is organized in the way a mathematicians would. On the other hand, the 

mathematical content of the curriculum that the teacher must impart has been determined 

by various agents of the educational macro system via a process that is generally 

unknown to the future teacher. The curriculum is organized by a list of contents that are 

related to the skills and competencies to be developed, the same happens with the 

evaluation process, and is immersed in a particular conception of understanding teaching 

and learning. Therefore, the curricular organization of the mathematical content, the 

object of education in a stage of education, needs to be seen as a systematic organization, 

which considers mathematical content as a fundamentally cultural and basic element, 

which is organized from an epistemological and phenomenological perspective capable 

of developing basic mathematical skills, and is introduced by means of an educational 
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organization as well as criteria for assessing the acquired knowledge and skills. The 

subject: mathematics for teachers in compulsory education would deal with revising 

different aspects of curricular mathematical content relevant to the stage of education in 

which the teachers have to exercise their profession from the disciplinary mathematical 

perspective, facilitating the teachers with a re-conceptualization of curricular 

mathematical content. This is a process of immersing the trainee teacher in curricular 

mathematical content which they will have to organize for teaching afterwards. This is, 

ultimately, a proposal for basic training in a closed curricular structure, which is 

approached from formal mathematical competence and basic mathematical competence, 

i.e. the analysis and understanding of curricular mathematical content in disciplinary 

terms with epistemological, phenomenological and applicability references, in which 

students complete their basic training related to such issues at the level of conceptual 

systems involved: operations, structures and processes in problem-solving situations, 

using the reasoning and the appropriate language for the thematic level in question by 

means of tasks and activities of  differing natures but necessary for linking the school 

tasks and activities.  

 

The didactic of mathematics for teachers in compulsory education  

The next item to be considered is the second group of activities and tasks to be 

developed by the trainee teacher: "Analyzing and interpreting students’ production" 

which refers to the knowledge and ability to mobilize different resources: analogical and 

digital mathematical representations, difficulties, obstacles and errors associated with the 

object of teaching mathematical content. Take, for example, the role of the difficulties, 

obstacles and errors of students in this analysis and interpretation. It is known that 
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learning mathematics creates many difficulties for the students and that these differ in 

nature. Some difficulties originate in the educational macro system, but generally 

speaking, they originate in the educational micro system: student, subject, teacher and 

educational institution. These difficulties are connected and reinforced in complex 

networks that, in practice, materialize in the form of obstacles and are manifested by the 

students in the form of errors. The error will have different roots, but will always be 

considered as the existence of an inadequate cognitive schema in the student, and not 

only because of a specific lack of knowledge or an oversight. The difficulties may be 

grouped into five major categories associated to 1) the complexity of the objects of 

mathematics, 2) mathematical thinking processes, 3) the teaching processes developed for 

the learning of mathematics, 4) cognitive development processes of students and 5) 

affective and emotional attitudes toward mathematics (Socas, 1997). In addition to the 

curricular and disciplinary mathematical knowledge, the trainee teacher of mathematics 

requires didactical mathematical knowledge (DMK) to be able to organize the 

mathematical content for teaching. This is specific professional knowledge that has to be 

provided by the subjects belonging to the didactics of mathematics, which includes the 

elements of analysis for adequately understanding, planning and conducting professional 

work. This knowledge is developed under the two constructs discussed above, didactic 

analysis and curricular organization.  

 

Best Practices 

The proposed teacher training should focus on the organization and development 

of best practices for the attainment of the skills required, these have to be developed 

within the framework of problem solving of a professional nature and associated with the 
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knowledge and resources that the teacher must mobilize to obtain the solution to the 

problem. 

Thus, mathematical problems emerge from the situations developed in the 

curriculum and are addressed from the FMC in the subject of mathematics for the 

teachers in terms of the language and reasoning involved in the conceptual field in 

question. This immersion of the student continues because the problem solving must be 

organized for teaching, usually in the context of a classroom program, which must be 

considered from the training analysis. It involves incorporating the consideration of the 

difficulties, obstacles and errors of students in the different domains of mathematical 

activity. The trainee teachers of mathematics perform different activities and tasks of 

application, related to the various mathematical fields, and conclude in all situations with 

the elaboration of a map of the mathematical knowledge being dealt with, organized in 

terms of the six disciplinary mathematical content areas according to the FMC model, 

i.e., operations, structures, processes, representations, problems and reasoning. Certain 

tasks developed by the trainee teachers of mathematics in the course in a report format, 

all of which are from a questionnaire, are presented below: 

Task 1: Report on numeration systems and decimal system 

(For example, the first questionnaire has questions about the relations between the 

different numerical systems, the description of the numerical systems from the decimal 

representation and the representation in the number line of the different numbers). 

- Analysis of the errors made and of the blank responses, as well as determination 

of their cause or origin. 
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- To characterize the D numeration system (Decimals) as is clear from the 

answers to the questions. 

- Analysis of the representational procedures on the number line of the numbers 

proposed in the questionnaire. 

- Decimal numbers in the curriculum of compulsory primary or secondary 

education. 

- To elaborate a map of the numbers in the primary or secondary education. 

- To elaborate a map of the procedures for representing numbers in primary or 

secondary education. 

Task 2: Report on operational, structural and processual knowledge in 

mathematics 

- Analysis and evaluation of the mathematical discipline according to SLA. 

- Analysis of unanswered questions and the mistakes made in the questionnaire, 

determining the source of errors. 

- Analysis of operational, structural and processual knowledge used in the 

questionnaire responses, both correct and incorrect. 

- Self-evaluation of the type of knowledge used in the answers. 

- Analysis of the mathematics curriculum in primary or secondary education. 

Choosing a course and a content block about numbers, algebra and functions, and 

analysing them from an operational, structural and processual perspective, 

identifying the systems they use for representing mathematical objects, the 

problems they give rise to and the reasoning they propose, with special emphasis 

on identifying the heuristic content. 
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- Analysis of a mathematics textbook in compulsory secondary education. 

Choosing two consecutive themes on numbers, algebra and functions, and then 

analyzing them from the aforementioned perspective. 

Task 3: Report on mathematical problem solving 

- Solving the problems correctly in various sessions. 

- Analysis of the difficulties and errors made in the different sessions in solving 

the problems of the questionnaires.  

a) To identify the following phases in each problem: acceptance, blockage and 

exploration 

b) To determine the source of the difficulties and errors. 

- To identify the different reasoning (and different heuristics) used in the given 

questionnaire responses. 

- To analyze the map of the contents involved in solving the mathematical 

problems proposed in the questionnaire, paying special attention to the 

mathematical tools and reasoning (heuristics) used. 

- To develop a new map of knowledge involved in the correct resolution of the 

proposed problems. 

 

Final considerations 

A proposal is suggested here, for training student teachers in primary and 

secondary mathematics to improve the learning and teaching of mathematics in these 

education stages because as Sowder said (2007), many of the difficulties that 

mathematics students have are to do with the teaching they receive, but what does 

preparing a trainee maths teacher competently really involve? This proposal opts to 
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develop three systems of basic activity that can determine the knowledge and skills of the 

teacher, presented as professional tasks from a global perspective in the context of 

problem solving in the case of their profession. 

The three systems of professional activities categorize teachers according to 

different skills, for example, in the case of the activity: organizing the mathematical 

content to teach it, puts students in these skills areas: knowledge of the contents of 

mathematics from a global perspective in which the resolution of problems is an inherent 

part of the mathematical culture that should be taught and the ability to translate this into 

learning expectations, and the design and planning of learning sequences. In the case of 

the activity of analyzing and interpreting the students’ mathematical production places 

students in the skills area regarding understanding and working based on the students’ 

representations including their idiosyncrasies, and knowing and working with the 

difficulties, obstacles and errors of the students. 

As regards the activity of knowing how to manage mathematical content in the 

classroom, this places students in the skills area of designing and controlling problematic 

situations appropriate to the different levels and possibilities of the students, and 

observing and assessing students in learning situations. The case of training maths 

teachers leads one to consider the basic situations of meaningful and effective work and 

how these should be dealt with by a professional comprehensive approach. The 

comprehensive approach is set in the context of trainee teachers, and it articulates and 

connects different subjects in a global proposal which seeks to ensure a comprehensive 

and inclusive vision of mathematics and of teaching and learning mathematics, 
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encouraging the active participation of students, which shows how we get closer to 

understanding reality through mathematical culture and how it is perceived by them. 

Research has shown that when mathematics programs, from the disciplinary 

approach, are used with trainee teachers as a finished product, they are insufficient. 

Providing trainee teachers with an epistemological and phenomenological analysis of 

mathematical objects of teaching involves not only knowing the conceptual systems 

involved, their languages and problems, but also the usefulness of mathematical objects 

and their use, which could be successfully used to deal with the interpretation of the aims 

of the mathematics curriculum in this educational stage and confidently take on the 

didactical mathematical knowledge. The organization of mathematical knowledge using 

the phenomenology / epistemology pairing involves paying special attention to the use, 

management and function that this knowledge can have at a given time, without losing 

sight of its internal logic. Finally, it is important to emphasize that this global proposal 

for training mathematics teachers by "immersion" in the curriculum of the educational 

stage where they will work in the future, will allow them to develop, in this environment, 

the knowledge and skills needed in their professional work. 

This research was partially supported by the National Plan of Research of the Ministry of Science 
and Innovation: Mathematical Competence, problem solving and technology in Mathematical 
Education (EDU2008-05254). 
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Abstract: Problem solving doubtless is an essential element of mathematical learning, so 
that mathematics educators often are satisfied when finding situations that lead their 
students to such activity. But in many cases, the chosen situations and the ways to guide 
students' works are not sufficiently analyzed from a didactic point of view. Our goal in 
the present analysis is to underline the possible ways for managing the situations, and to 
exhibit the parameters that educators have at their disposition within their role as 
mediator between students and mathematical knowledge and know-how.  
 
Keywords: Problem solving, problem for investigating, project based learning, a priori 
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1. Classical problem solving 

Problem solving at its broad extent is clearly exposed by Alan Schoenfeld 

(Schoenfeld, 2006, p.41): “[Problem solving] includes a child’s actions in interacting 

with its parents, a student working on a mathematics problem in class or in the 

laboratory, and a teacher’s decision-making while teaching a mathematics (or other) 

lesson.” In this paper, we will only consider problem solving in mathematics instruction. 

Nevertheless, what we mostly found in mathematics educational literature and in learning 

material designed for students is a restricted use, with sometimes a reduction to drill for 

improving skills. In our opinion, this approach is too limited. Thus we first analyze some 

typical situations used in mathematics education with a problem solving purpose. 

Our goal in the following analysis is to underline the possible ways for managing 

the situations, and to exhibit the parameters that educators have at their disposition within 

their role as mediator between students and mathematical knowledge and know-how.  

1.1. Too easy… and how to do it better 
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The following Math Problem Solving example comes from a worksheet of Rhl 

School. We may consider it as a representative of certain trend in exploiting problem 

solving in mathematics education. 

 

“Ryan’s Class 

There are exactly twelve children in Ryan’s class. Only four of the children are 

boys. The following questions refer to a time when all the children are present in the 

class. There are no visitors in the class. There might be more than one correct answer to a 

question. 

1. Which of the lettered statements must be true? 
2. Which of the lettered statements cannot be true? 
3. Which of the lettered statements could be true or not true?  
a. There are twice as many girls as boys in Ryan’s class. 
b. There are eight more girls than boys in Ryan’s class. 
c. There are four more girls than boys in Ryan’s class. 
d. If Ryan is sitting at a table with all the girls, there are exactly nine 
children at that table. 
e. If only three of the boys are standing on their heads, one of the boys is 
not standing on his head.” 

 

Math Problem Solving, Vol. 8, No. 1, May 5, 2003. Retrieved from 

http://www.rhlschool.com/math8n1.htm  

Comments about the task: Giving an answer to the lettered statements a, b, c and e 

only supposes to understand them. The only true problem here comes from the fact that 

we don’t know Ryan’s gender (while mostly used for boys, Ryan has been used for girls 

in the United States since the 1970s). And for the lettered statement d, if Ryan is a boy, 

the statement is true, and if Ryan is a girl, the statement is false; then the correct answer 

for us is the answer 3, but the correct answer would be different for somebody who 
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knows Ryan’s gender. So we note that there is a subtle semantic distinction in that 

statement; nevertheless, in terms of mathematics knowledge, we will say that the 

proposed task is too easy. That means that the mathematical activity for answering is 

poor, even though understanding the statements may have a relatively high intellectual 

cost for the students. Compare with the situation that would result from the following 

questions, without changing the data (i. e. a class of 12 students, four of them being 

boys): 

We try to form groups, all having the same number of students (for 
instance two groups of six students each), or all having the same numbers 
of girls and boys (for instance two groups, each one composed of four 
girls and two boys). What numbers of groups can we form in each case? 
 

For such reasons, researchers later followed in France by official curricular 

commissions, introduced precisions about problem solving, considering open problems 

and problem for investigating. What follows is translated from a French text by Roland 

Charnay (Charnay, 1993). 

“The team of the IREM of Lyon offers the following definition. 
An open problem is a problem that has the following characteristics: 
- The statement is short. 
- The statement does not induce either method, no solution (no 
questions intermediate or questions like "show that"). This solution should 
never be reduced to the use or the immediate application of the latest 
results presented in class. 
- The problem is in a conceptual domain to which students have 
enough familiarity. Thus, they can easily take "possession" of the situation 
and engage in testing, conjecture, draft resolution, counterexamples. 
Example 1 (extracted from "Rencontres Pédagogiques", n°12, INRP) 
I have 32 coins in my piggy bank. 
I only have coins of 2 F and 5 F. 
The total amount of my 32 coins is 97 F. 
How many coins of each value are in my piggy bank? 
Example 2 (extracted from "Situations problèmes", APMEP, Elem-
math IX). 
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What is the biggest product of two natural numbers that we can obtain 
using each digit from 1 to 9 once for writing the numbers?” 
 

The reader can find more precisions about Problem for Investigating in 

(Houdement, 2009), in particular a list of 24 representative statements, heuristic elements 

and perspective for research. 

 

1.2. OK but limited except for students at an advanced level… 

In this section, we present a situation well appropriate for sequences of 

investigation by 4 or 5 grade students. Thus it generates a good students’ training in 

numerical treatments. But its institutionalization in Brousseau’s meaning will be difficult 

until an advanced level, for instance undergraduate, because of the difficulty for 

enunciating and proving the general result. So in this case, the teacher can exploit the 

situation for younger students with an objective of arithmetical training or acquisition of 

methods, but not of learning new mathematics knowledge. 

“A statement for students of all levels: 
The number 23 can be written in many ways as a sum of natural numbers. 
For example: 
23 = 11 + 5 + 7. Among these sums, find the one whose product of the 
terms is the biggest (in our example, the product was 11×5×7 = 385). 
Other statement is: Among the additive decompositions of a natural 
number, find the one, whose product of its terms is the biggest.” 
 

Retrieved from http://educmath.inrp.fr/applet/exprime/plgrprge.pdf and from 

http://gilles.aldon.free.fr/ensemble/Ensemble/syplgrprtel.pdf 

In this situation, we can first discover the answer, either in particular cases (such 

as 23, that produces 4374 = 3×3×3×3×3×3×3×2 as highest product) or in the general case 

in a descriptive way. At more advanced levels, a new possibility is to deepen the 
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problem, and express and prove the general solution in an algebraic way. So does Gilles 

Aldon when he writes what follows. 

The Sloane Encyclopedia (the OEIS Foundation) gives some properties of 
this biggest product at http://oeis.org/A000792. It quotes a dozen of 
different definitions of the number a(n) equal to the biggest product 
obtained with partitions of n in sum. If we take a(0) = 1, then we obtain 
the induction formula: a(n) = max{(n-i)a(i), i<n}. This is the definition 
given in the Encyclopedia. 
 

In such a situation, a teacher does not have possibility to adapt the situation with 

some changes in the statement. He/she has only to know that the situation is convenient 

for arithmetic training of young students, and for improving the use of induction by older 

students. 

 

1.3. Too difficult because insufficiently explored by the interested teachers…  

Analyzing a problem of a mathematical contest: the “Math Rally of Alsace” 

We translate here the statement of one of the problems of a mathematical contest, 

the “Math Rally”, followed by the solution and comments given by the organizing team, 

retrieved from http://irem.u-

strasbg.fr/php/index.php?frame=.%2Fcompet%2Fcompet.php&m0=ral&categ=rallye. 

Exercise 3 (grade 11)  
In the Valley of Bruche River, a clearing has a circular shape. A treasure is 
buried near the clearing. An old parchment shows the location of the 
treasure: “From the great fir located on the circle, go to the poplar in the 
clearing. Then turn right at a right angle and walk to the edge of the 
clearing. Still turn right at a right angle and walk as many steps as from fir 
to poplar. There is buried treasure.” 
The clearing has a radius of 20 meters, and the only tree on the clearing is 
a poplar located at 4 meters from the centre. Unfortunately, on the edge of 
the clearing, firs disappeared long time ago. Can you find the distance 
between the centre of the clearing and the treasure? 
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Solution 

As is often the case in Math Rally, the statement tells a story, placed here in 

Alsace. The story is about a treasure, a fir tree, a poplar. Why not denote them T, S, P and 

label O the centre of the clearing, i.e. the circle. 

 

Figure 1: Geometric representation of the Math Rally problem 

In the Cartesian coordinate system (O, I, J) with x- axis parallel to the line (SP), 

let A and B the points obtained by orthogonal projection of P on the coordinate axes. We 

know that OP = 4, OS = OD = 20. As SPDT is a rectangle, SP = DT and PD = ST. Let a 

= OA, b = OB, c = PS and d = PD. Applying the Pythagorean Theorem to the triangles 

OBS, OAD and OAP, we obtain the relationships: 

OS2 = OB2 + BS2 = b2 + (a + c)2 = 202 (1) 

OD2 = OA2 + AD2 = a2 + (b + d)2 = 202 (2) 

OP2 = OA2 + OB2 = a2 + b2 = 42 = 1 (3) 

Computing (1) + (2) – (3), we obtain: 

(a + c)2 + (b + d)2 = 784. 
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Since (a + c)2 + (b + d)2 = OT2, then OT = 28. 

Thus the distance that we sought is 28 meters. 

 

Comments by the organizing team 

This is a geometrical exercise and it was the less successful for students. Yet 

its resolution only involves the Pythagorean Theorem, applied to several right 

triangles of course. 

Candidates who worked on this exercise drew a figure that includes letters 

often undefined. Didn’t they have the habit of labeling a figure in order to make it 

understandable? The resolution led them to the correct answer (28 meters), but most of 

them relied on a particular case – for example points S, O and P collinear – and they 

do not consider the general case. Some say that they were only considering a particular 

case, but many students seem not to realize it. (…)  

 

Our analysis 

Thus in its report, the organizing staff itself recognizes that this problem was 

unsuccessful. But we think that this poor result originates in a lack of mathematical 

analysis by the organizing team. The members of this team are very experienced teachers 

and competent mathematicians, but they were more preoccupied in this case by the 

design of an amazing story than by didactical considerations. As a matter of evidence, we 

refer to the solution given in the report, which is for us not satisfactory, because it is not 

convincing. It is like the rabbit that comes out of the hat of a magician: we measured 

lengths, and it appears that the final result does not depend on the variable elements. A 



  Pluvinage 

 

“good” solution of a problem produces a change in our mind with respect to the situation: 

from mysterious the result becomes evident for the reader. As an example, let us consider 

a classical result: The three altitudes of a triangle ABC intersect in a single point, called 

the orthocenter of the triangle. There are several proofs of this theorem, for instance by 

considering geocenter and circumcenter of the given triangle ABC, or studying angles 

and finding that the point of barycentric coordinates  ˆ ˆˆtanA, tan B, tan C  is the searched 

orthocenter of the triangle. These proofs are of interest, but their cognitive routes are 

relatively complex. In contrast, the proof illustrated by Figure 2 easily could produce the 

change of mind that we want to emphasize: We trace respectively by A, B and C the lines 

parallel to the opposite side of the triangle, that create a new triangle A’B’C’; the 

altitudes of ABC are the perpendicular bisectors of the sides of A’B’C’. Thus it is 

obvious that they intersect at the point O equidistant of the three vertices A’, B’ and C’. 

 

Figure 2: Altitudes of a triangle as perpendicular bisectors of a bigger triangle 

For the Math Rally problem, we present below a solution approach that intends to 

promote the reader’s mathematical reflection and analysis. Then we will consider what 

changes could produce a better result in implementing this problem in the classroom. 

To conclude that the distance between the center O of the circle and the point T 

does not depend on the location of S on the circle is the same as to affirm that the locus of 
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T when S moves along the circle is a new circle with O as its center. This assertion does 

not seem easier than the given statement of the problem (Figure 3 left), but… 

 
Figure 3. Left: incomplete figure, right: completed figure 

If we observe that the situation is mathematically incomplete, our vision of the 

problem completely changes. And completing the figure is a natural idea when working 

with software such as Cabri or Geogebra. This involves drawing a complete line as a 

perpendicular to a given line or segment. After completing (figure above, right), a new 

statement is: “Given a circle and a point P inside the disk, we consider two perpendicular 

lines passing through P and respectively cutting the circle at D and D’, and at S and S’. 

Then the rectangle obtained by tracing by these points parallels to DD’ and SS’ has its 

center at O.” And this is a quite evident result, because the perpendicular bisectors of SS’ 

and DD’ are the axes of symmetry of the rectangle and pass through the center O of the 

circle. 

The given statement of the problem did not lead the candidates, of the 

mathematical contest, a way to focus on a geometric construction. But we see that a 

teacher in his (her) class can present the same mathematical situation through another 
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statement and in a different environment that changes the didactical situation and 

facilitates the students’ access to it. In this case, we pretend that a modified presentation 

could change the vision that students have of that geometric situation. 

As a conclusion at this point, we will assert that the kind of students’ work 

generated by dealing with a problem strongly depends on the way showed by the 

statement of the situation. But the form of working, particularly when using the 

technology, has an influence too. This enforces the role of mediator devoted to the 

teacher, not only when preparing the lesson but also during the class. 

 

2. Project based learning (PBL or PjBL) 

In the expression “Problem Solving” appears the word “Problem”, which is also 

present in the pedagogical method called “Problem Based Learning” and often designated 

by the initials PBL. This method is in use in various disciplines such as biology or 

medicine or engineering, but problems for the associated topics do not refer to the same 

kind of mathematical problems that we studied in §1. For our part, in empiric 

experiments, we studied the potential impact of projects of practical action on the 

teaching-learning process. We were applying a teaching strategy, presented in Cuevas & 

Pluvinage (2003), close to the method denominated Project Based Learning, which 

sometimes is also designated by the initials PBL. Here, like other authors, we use the 

letters PjBL in order to avoid confusions with Problem Based Learning. 

Important features of our teaching strategy lie in the systematic use of registers of 

representation according to Duval’s terminology (Duval, 1995): formation rules, 

treatments within a register, and conversions from one register to other. For this reason, a 
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first step in the study of a project of practical action is a descriptive phase, the objective 

of which being to introduce the formation in one register or various registers.  

 

2.1. A paradigmatic example: concrete and virtual Tangram 

Mexican educative institution presents Tangrams as a medium to organize 

learning activities at school. The Instituto Latinoamericano de la Comunicación 

Educativa (ILCE) has a web page on this subject at 

http://redescolar.ilce.edu.mx/educontinua/mate/imagina/mate3z.htm, with a link to 

instructions for cutting the puzzle. We retrieved the figure below from this web site. In 

English, for instance Wolfram’s project gives a version at 

http://demonstrations.wolfram.com/Tangram/. 

 
Figure 4: The seven pieces of a Tangram and shapes to be built 

 

The web page of ILCE presents both possibilities for using Tangrams: concrete 

and virtual (on line). Wolfram’s proposal is only a virtual one. We actually observed 
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some use of a concrete Tangram in class and related problems, but it remains to 

experiment the more extended use that we present in this section. 

There are many problems that the students are able to pose by themselves. For 

example: Can we build a triangle with the seven pieces? With the seven pieces, can we 

construct a triangle different from the preceding? Can we build with the seven pieces a 

rhombus different from a square? How many distinct rectangles can we build with the 

seven pieces? How many distinct rectangles can we build with some of the pieces, but not 

necessary all pieces? Etc. In that situation, teacher’s role can be to encourage the students 

to invent problems and not only to solve given problems. 

An interesting activity in a class might be to classify these distinct problems. 

Organizing principles for such a classification arise from considerations of shape 

resulting from values of lengths, angles and areas. For example, the shape of each piece is 

a polygon with angles 45º, 90º or 135º, and this leads us to a strength restriction for the 

possible shape of a triangle made with the seven pieces: a triangle necessarily is a right 

isosceles triangle. With exact lengths, we enter in the symbolic world, because the 

lengths of the sides of a piece in two distinct directions are incommensurable magnitudes. 

In the table below, we present the exact lengths of the sides of pieces with the choice of 

the length of the shortest side as unit. 
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Table 1. Names of the Tangram pieces and exact lengths of their sides 

Name Side 1 Side 2 Side 3 Side 4 

Square 1 1 1 1 

Parallelogram 1 2  1 2  

Triangle 1 1 1 2   

Triangle 2 1 1 2   

Triangle 3 2  2  2  

Triangle 4 2 2 2 2   

Triangle 5 2 2 2 2   

 

 

Figure 5: A shape impossible to construct with Tangram 

Then, for instance when studying the situation of a rhombus different from a 

square (Figure 5), we can first observe that its angles might be 45º and 135º and then use 

the algebraic register and employ inferences like 2 2 .
a c

a b c d
b d


     

 

 

 
We suggest that all the problems we have seen can be included into a project of 

practical action, and in order to do this, we will replace the concrete material by a virtual 

one. Then the first step is to construct the material. We used Cabri geometer for this 

Problem to be solved by the reader: Prove the impossibility of constructing a 
rhombus different from a square with the seven pieces of Tangram.
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purpose, but the design would be approximately the same if we were using Geogebra. 

Thus it is necessary to solve a first problem in our project: How to move a piece in the 

plane? 

There is a natural relationship between movements and geometric 

transformations. Nowadays, it is controversial if geometric transformations have a place 

in the curricula at elementary level. In our opinion, moreover with the reference to a 

genetic point of view, the geometric transformations are a topic of high interest in 

mathematics education. We suggest using the introduction of transformations in the 

learning of geometry at secondary level in order to facilitate the transition from Geometry 

I (natural geometry) to Geometry II (natural axiomatic geometry) (Houdement & 

Kuzniak, 1999).  

1 

 

2 

 

3 4 

 

Figure 6. Modeling the displacement of a quadrilateral in the plane: 1- Choosing a center 
(here the midpoint of two midpoints), 2- Translating the piece, 3- Rotating the translated 
piece around its center, 4- Showing only the final figure with the two director points 
(black and red) 
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Figure 6 illustrates a solution obtained by a Cabri program. For each piece, we 

choose a center point that is represented by a black dot, and a vertex that is represented 

by a red dot. When moving the black dot, we translate the piece, and when moving the 

red dot, we rotate the piece around the black dot. In order to do that, first we build each 

piece and mark the black and red dots. Then we define the translation and the rotation 

and apply them to the piece. Finally we hide the initial piece and only show its last 

image. 

The reader can imagine alternative possibilities, and also complete the universe of 

allowed transformations by adding the reflection of the parallelogram that we do not 

introduce in our program (with a concrete jigsaw puzzle, we can turn over the 

parallelogram). And one can find many interactive programs on line in Spanish and in 

English, but almost all such web pages are only game oriented. For example, we don’t 

see there any place for verbal descriptions or for problems whose solutions are 

“impossible” to achieve. So, in this case, it seems to us preferable to promote students’ 

work in classroom or at home. The teacher can construct a virtual Tangram and give 

his/her students a web page like that illustrated in the figure below, or ask them for 

constructing the virtual Tangram. 



  Pluvinage 

 

 
Figure 7: Virtual Tangram designed for students 

Assigning the task of constructing a virtual Tangram to students by using 

geometric software is a good example of what Martin Wagenschein (1977) presents as 

Exemplarisches Lehren. The translation “exemplary teaching” does not exactly reflect the 

meaning of this expression, which refers to a specific kind of case analysis. The 

specificity of this method is that the studied cases are chosen as representative of the 

situations to be mastered by the student at the end of the learning process. Here, we 

pretend that the achievement of the construction of Tangram is significant for 

acquisitions of certain level of competency in mastering geometric transformations.   

 
2.2. Some didactic observations resulting from empirical studies using projects 

Most projects of practical action include spatial situations. So their modeling 

supposes to connect spatial geometry (3D-geometry) and 2D-geometry. This can be made 
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by perspective representations or plane sections and also by nets, a net being an 

arrangement of edge-joined polygons in the plane which can be folded (along edges) to 

become the faces of the polyhedron (see 

http://en.wikipedia.org/wiki/Net_%28polyhedron%29). A great family of projects of 

practical action is the construction of solids subject to certain constraints. 

The study of nets associated to polyhedra is a particular case of these spatial 

projects, which can be applied at high school or more advanced level. When we were 

experimenting in undergraduate classes, we realized that the majority of students do not 

master the easiest spatial situations, because of the lack of both knowledge and 

experience. For instance it was a great surprise for them to know that all convex 

polyhedron has a net, and that the “tower” made by the superposition of two cubes, the 

edges of the higher being a third of the edges of the lower, is a polyhedron whose 

construction with thin cardboard requires two disconnect nets. 

 
Figure 8. “Tower”: Non convex polyhedron that does not have a net 

The preceding example illustrates one of the natural problems that arise from 

studying the nets associated to polyhedra. Other problems are those of uniqueness: Can 

we obtain two different polyhedra with the same plane net? 
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Figure 9: Same net for two different polyhedra? 

Problem to be solved by the reader: The net above allows constructing a 
regular octahedron by folding paper. Try to find another (non convex) 
octahedron that the same net allows constructing. 

 
 

Modeling spatial situations goes further than 3D-geometry. There is a lot of 

possible projects about containers (glasses, bottles, cans, recipients, etc.). A task for our 

students of the Master degree in mathematics education is to design a didactical project, 

and some of them choose this kind of subject. We present below the statement of a 

problem, which is a part of such a project that a student presented in a Web site, followed 

by its English translation and the representation of the solution that we made with 

Geogebra. 

Optimización 

Escrito por Paulo Angel Garcia Regalado  

Domingo, 05 de Diciembre de 2010 01:32  

1. Se pretende fabricar una lata de refresco de 335 mililitros de capacidad. ¿Cuáles 
deben ser sus dimensiones para que se utilice el mínimo posible de metal? 

 
Retrieved from http://grupolycaon.com/matedu/ 

Translation of the statement to English: 

This image cannot currently be displayed.
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We want to make a soda can of 335 ml capacity. What should be its size in order to use 
the minimum amount of metal? 
 

 
Figure 10. Problem to be solved by the reader: In the solution 
represented above for the problem of constructing a can with minimal 
quantity of metal, it seems that the height of the can is equal to the 
diameter of both disks at the bottom and the top. Is that rigorously exact? 

 
In this last example, we saw calculus beside geometry. That is only a sample of 

the variety of mathematical domains and theories that the study of projects led us to 

encounter. Particularly, the project of modeling how recipients are filled by a regular 

flow of water has been a wealth field. 

For instance 15-year students in Germany and France were asking by Stölting 

(2008) to represent in this situation the height of water in the recipient as a function of the 

time. We reproduce below the answers given to Stölting by a student. The last figure on 

the right is very interesting, because it shows a trend to the discretization of the 
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phenomenon. Previously we emphasized the importance of verbal descriptions of a 

phenomenon to be studied. Here we observe another important step in an investigation 

process for a complex phenomenon: a qualitative approach with the help of a 

representation. Both verbal description and figural representation were actually present in 

Stölting’s research. Hence, students were interviewed to explain ways they drew the 

figures. 

 
Figure 11: Answers of a (high achiever) French student 

Interviews with high school students in order to deepen these observations with 

learning objectives are reported by Pluvinage & Marmolejo (2012) (see an illustration on 

next page), who describe the application in a class of the collaborative method 

ACODESA (Hitt, 2007), characterized by distinct phases of work: individual, group and 

collective, for exploiting the complete situation of filling recipients. We observed that a 

first step is important, namely to consider various cylindrical recipients. Indeed, many 
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students think that, in the case of a cylindrical recipient, diameter and height play the 

same role for the volume. So it is important to pay attention to this case studying the 

volumes of various cylindrical recipients, for instance as pouring water from one 

recipient to another that has double diameter and half height. Many students are surprised 

by the fact that the second recipient is not full. Moreover the same behavior as that 

related before was observed with our students. With access to the convenient 

mathematical tools, this would lead us to use an ordinary differential equation for solving 

the problem. 

Nevertheless there is another easier way for modeling the phenomenon, changing 

the theoretical frame of reference. It is the consideration of reciprocal function. Indeed, 

the volume of a truncated cone of height h, radio of lower disk a, and radio of upper disk 

b, is given by  2 2V
3total

h
a ab b


   . Thus we can represent the volume as a function 

of the height, and then by symmetry we can conversely obtain the height as a function of 

the height. We used Geogebra in the illustration. But, and we do not know the precise 

reason, students do not spontaneously go on that way. This needs a help to the students 

from the teacher. 
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Figure 12. Answer given by an interviewed high school Mexican student: “The same 

amount a of water produces a rise that always diminishes when the height increases” 

 
Figure 13: Solution resulting from consideration of the reciprocal function of volume as 

function of height 
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How could a teacher exploit these reported observations and considerations, for 

designing a possible instructional route? The first stages to do this are common to many 

practical action projects: 

(a) A diagnostic, here with a sheet of questions as we have seen about 
comparing volume of different cylindrical recipients and representing 
how various recipients are filled by a regular flow; 

(b) Some concrete experiment, for instance here to pour water or sand 
from a recipient to another and observe if the second is fulfilled or 
not. In our environment it is easy to get recipients that have the 
required characteristics: shape approximately cylindrical and 
respective diameters and heights approximately having simple ratios 
(for instance a box of coarse salt and a glass, or tin cans of varying 
size). 

 
At the end of each stage, a discussion and a synthesis (e.g. volume of cylinder) 

will be useful. For the following stages, with the use of computation, the knowledge of a 

truncated cone and its volume formula are necessary. The teacher has the choice between 

giving the students these elements, and asking the students to obtain them by searching 

on Internet. Then the stages are: 

a) Figural representation of the transversal section of a truncated cone of 
varying height and diameters of upper disc and lower disc (see figure 
on the preceding page), and graphical representation of its volume V as 
a function of the height h of liquid in the recipient; 

b) In order to find now the inverse of the obtained function, i.e. the height 
h of liquid as a function of the volume V, first observe the difficulty to 
work only with a formula and, as a consequence of this difficulty, 
introduce the students into the work with geometric register, 
particularly with the use of reflection. Construction depends on 
software in use, for instance Cabri could reflect the graph of the 
function V(h) and Geogebra not, so with Geogebra we had to locate a 
point on the graph and then to reflect this point and eventually obtain 
its locus. 

 
The time devoted to this project is a good investment with the objectives of 

improvement of the functional thinking and acquisition of the difficult procept (amalgam 
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of process, mathematical object and symbol introduced by Eddie Gray and David Tall) of 

an inverse function. 

 

3. Concluding 

Teaching ways that we found rich of learning perspectives for the students consist 

in managing practical action projects at school, particularly in collaborative environment, 

for instance with the so called ACODESA method (Hitt, 2007). An important feature of 

these teaching ways is that the teacher is not the only one who is posing problems or 

ideas of problems. Nevertheless, his/her experience is essential for redacting in a correct 

mathematical language the statements suggested by students. And this step of writing 

mathematics also is extremely important for the students in terms of improvement of their 

mathematical experience. 

 

The author is grateful to the reviewers, whose pertinent suggestions allowed to improve 
the first version of this paper. 

 

 
References 

Charnay, R. (1993) Problème ouvert, problème pour chercher, Grand N, nº51, retrieved 

from http://www.crdp.ac-grenoble.fr/imel/nx/n51_6.htm 

Cuevas, C. A. & Pluvinage, F. (2003). Les projets d’action pratique, éléments d’une 

ingénierie d’enseignement des mathématiques, Annales de didactique et sciences 

cognitives, Vol. 8, 273–292. 

Duval, R. (1995), Sémiosis et pensée humaine : registre sémiotique et apprentissages 

intellectuels, Peter Lang, Berne. 

Hitt, F. (2007). “Utilisation de calculatrices symboliques dans le cadre d’une méthode 

d’apprentissage collaboratif”, de débat scientifique et d’autoréflexion. In M. Baron, 



  TME, vol10, nos.1&2, p .243 
 

 
 

D. Guin et L. Trouche (Éds.), Environnements informatisés pour l’éducation et la 

formation scientifique et technique : modèles, dispositifs et pratiques. Paris: Hermes. 

Houdement, C. (2009), Une place pour les problèmes pour chercher, Annales de 

Didactique et de Sciences Cognitives, Volume 14, 31-59 

Houdement, C. & Kuzniak, A. (1999). Un exemple de cadre conceptuel pour l’étude de 

l'enseignement de la géométrie en formation des maîtres, Educational Studies in 

Mathematics, Volume 40, Number 3, 283-312 

Pluvinage, F. & Marmolejo Rivas, E. (2012) Une recherche didactique recourant à la 

modélisation et au travail collaboratif : un cas d’étude de paramètres, in Formation à 

la Recherche en Didactique des Mathématiques, Loze-Dion éditeurs, Québec, 

Canada, pp. 11-24. 

Schoenfeld, A. (2006). Problem Solving from Cradle to Grave. Annales de Didactique et 

de Sciences Cognitives, Volume 11, 41- 73 

Stölting, Pascal, (2008), La pensée fonctionnelle des élèves de 10 á 16 ans. Une étude 

comparative de son enseignement en France et en Allemagne, Thèse de doctorat, 

Université de Paris Diderot 

Wagenschein, M. (1977), Verstehen lernen, genetisch-sokratisch-exemplarisch, Beltz 

Verlag: Basel; Weinheim. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Pluvinage 

 

 



  TME, vol10, nos.1&2, p.245  
 

 
The Mathematics Enthusiast, ISSN 1551-3440, Vol. 10, nos.1&2, pp.245-278                  
 2013©The Author(s) & Dept of Mathematical Sciences-The University of Montana  
 

Thoughts About Research On Mathematical Problem- Solving 
Instruction  

  
Frank K. Lester, Jr. 

Indiana University, Bloomington, USA 
 

Abstract: In this article, the author, who has written extensively about mathematical 
problem solving over the past 40 years, discusses some of his current thinking about the 
nature of problem-solving and its relation to other forms of mathematical activity.  He 
also suggests several proficiencies teachers should acquire in order for them to be 
successful in helping students become better problem solvers and presents a framework 
for research on problem-solving instruction. He closes the article with a list of principles 
about problem-solving instruction that have emerged since the early 1970s.  
 
Keywords: mathematical activity, problem solving, problem-solving instruction, 
proficiencies for teaching, craft knowledge, research design, teaching as a craft, teacher 
planning, metacognition.. 
 

 

Introduction 

My interest in problem solving as an area of study within mathematics education 

began more than 40 years ago as I was beginning to think seriously about a topic for my 

doctoral dissertation.  Since that time, my interest in and enthusiasm for problem solving, 

in particular problem-solving instruction, has not waned but some of my thinking about it 

has changed considerably.  In this article I share some of my current thinking about a 

variety of ideas associated with this complex and elusive area of study, giving special 

attention to problem-solving instruction.  To be sure, in this article I will not provide 

much elaboration on these ideas and careful readers may be put off by such a cursory 

discussion.  My hope is that some readers will be stimulated by my ideas to think a bit 

differently about how mathematical problem solving, and in particular problem-solving 

instruction, might be studied. 
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Setting the stage 

Most mathematics educators agree that the development of students’ problem-

solving abilities is a primary objective of instruction and how this goal is to be reached 

involves consideration by the teacher of a wide range of factors and decisions.  For 

example, teachers must decide on the problems and problem-solving experiences to use, 

when to give problem solving particular attention, how much guidance to give students, 

and how to assess students’ progress.  Furthermore, there is the issue of whether problem 

solving is intended as the end result of instruction or the means through which 

mathematical concepts, processes, and procedures are learned.  Or, to put it another way, 

should teachers adopt “teaching for problem solving, ”—an ends approach—or “teaching 

via problem solving” —a means approach?1  (I say more about means and ends later in 

this article.)  In my view, the answer to this question is that both approaches have merit; 

problem solving should be both an end result of learning mathematics and the means 

through which mathematics is learned (DiMatteo & Lester, 2010; Stein, Boaler, & Silver, 

2003).  Whichever approach is adopted, or if some combination of approaches is used, 

research is needed that focuses on the factors that influence student learning.  

Unfortunately, as far as I know, no prolonged, in-depth, programmatic research of this 

sort has been undertaken and, as a result, the accumulation of knowledge has been very 

slow.  Moreover, the present intense interest in research on teachers’ knowledge and 

                                                 
1  It has become more common to refer to the “means” approach to teaching as teaching through 
problem solving.  In Schroeder and Lester (1989) we discuss three approaches to problem-solving 
instruction:  teaching about, for, and via problem solving.  Teaching “via” problem solving is 
essentially the same as teaching through problem solving.  Today, teaching about problem 
solving is not generally regarded as a legitimate instructional method, although I suspect that 
some (many?) teachers and curriculum writers subscribe to this approach. 
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proficiencies demands that future problem-solving research pay close attention to the 

mathematical and pedagogical knowledge and proficiencies a teacher should possess (cf., 

Ball, Thames, & Phelps, 2008; Hill, Sleep, Lewis, & Ball, 2007; Moreira & David, 2008; 

Zazkis & Leikin, 2010). 

But before discussing problem-solving instruction, let me first say a few things 

about mathematical problem solving.  This short discussion will highlight how my 

thinking has changed about the nature of problem solving and other forms of 

mathematical activity. 

 

Some claims about Problem Solving 

Among the many issues and questions associated with problem-solving 

instruction I have worried about during my career, several have endured over time.  In 

this section I make  five claims related to these enduring issues and offer brief 

discussions of my current thinking about them. 

Claim 1. We need to rethink what we mean by “Problem” and “Problem Solving” 

Although there have been at least four distinct problem-solving research traditions 

within (namely, Gestalt/Cognitive, Learning/S-R, Computer/Information Processing, and 

Psychometric/Component Analysis), they all agree that a problem is a task for which an 

individual does not know (immediately) what to do to get an answer (cf., Frensch & 

Funke, 1995; Holth, 2008).  Some representative definitions illustrate this fundamental 

agreement: 

A problem arises when a living creature has a goal but does not know how this 

goal is to be reached. (Duncker, 1945, p. 1) 



  Lester 

 

A question for which there is at the moment no answer is a problem. (Skinner, 

1966, p. 225)   

A person is confronted with a problem when he wants something and does not 

know immediately what series of actions he can perform to get it. (Newell & 

Simon, 1972, p. 72) 

Whenever you have a goal which is blocked for whatever reason . . . you have a 

problem. (Kahney, 1993, p. 15)   

These definitions have two common ingredients:  there is a goal and the 

individual (i.e., the problem solver) is not immediately able to attain the goal.  Moreover, 

researchers irrespective of tradition, view problem solving simply as what one does to 

achieve the goal.  Unfortunately, these definitions and descriptions, like most of those 

that have been given of mathematical problem solving – including those I and other 

mathematics educators have proposed – are unhelpful for thinking about how to teach 

students to solve problems or to identify the proficiencies needed to teach for or via 

problem solving.  A useful description should acknowledge that problem solving is an 

activity requiring an individual (or group) to engage in a variety of cognitive actions, 

each of which requires some knowledge and skill, and some of which are not routine.  

Furthermore, these cognitive actions are influenced by a number of non-cognitive factors.  

And, although it is difficult to define problem solving, the following statement – which 

Paul Kehle and I devised a few years ago– comes much closer to capturing what it 

involves than most of those that have appeared in the literature.  

Successful problem solving involves coordinating previous experiences, 

knowledge, familiar representations and patterns of inference, and intuition in an 
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effort to generate new representations and related patterns of inference that 

resolve some tension or ambiguity (i.e., lack of meaningful representations and 

supporting inferential moves) that prompted the original problem-solving activity. 

(Lester & Kehle, 2003, p. 510)  

The advantage of this description of problem solving over the others lies in its 

identification of several key ingredients of success: coordination of experience, 

knowledge, familiar representations, patterns of inference, and intuition.  So, to be a 

successful problem solver, an individual must have ample relevant experience in learning 

how to solve problems, strong content knowledge, proficiency in using a variety of 

representations2 and a solid grasp of how to recognize and construct patterns of inference.  

Moreover, it recognizes the importance of intuition in successful problem solving3.  With 

the possible exception of intuition, each of these ingredients should be attended to any 

program aimed at equipping prospective teachers with the proficiencies needed to teach 

mathematics either for or via problem solving.  I say more about the implications of this 

description for the education of mathematics teachers later in this article.  But first, let me 

continue with a few more observations about the nature of problem solving. 

Claim 2.  We know very little about how to improve students’ metacognitive abilities. 

So much has been written about metacognition and its place both in the teaching 

and learning of mathematics that a few comments about this elusive construct seem 

warranted.  I remain convinced that metacognition is one of the driving forces behind 

                                                 
2  The research perspective on the role of representation in doing mathematics provided by Goldin 
(2003) is particularly relevant to this discussion. 
3  A reviewer pointed out to me that intuition is itself a very subtle notion and as such the 
definition we propose is unhelpful.  To be sure, intuition is a subtle idea, but I think it essential to 
include it in any description of what problem solving entails because it serves to point out just 
how subtle the act of problem solving can be and, consequently, how difficult it has been to make 
progress in learning how to teach students to be better problem solvers. 
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successful problem solving (Garofalo & Lester, 1984), but we really know almost 

nothing about what teachers should do to develop students’ metacognitive abilities.  To 

be sure, it is essential that successful problem solvers be able to monitor and regulate 

their cognitive behaviors.  But, almost no research has been done that demonstrates that 

students’ can be taught these behaviors.  Within the mathematics education community 

both Schoenfeld (1992) and I (Lester, Garofalo, & Kroll, 1989), among others, have 

conducted research aimed at enhancing students’ metacognitive abilities, but neither of us 

has identified the proficiencies teachers need to do this.  Instead, we have offered 

suggestions, with too little evidence to support them.  So, any program designed to 

enhance mathematics teachers’ proficiencies that pays heed to metacognition should do 

so only after acknowledging that there is no conclusive research evidence to support any 

particular method of metacognition instruction over another. 

Claim 3.  Mathematics teachers needn’t be expert problem solvers; they must be serious 

students of problem solving.   

It is natural to suggest that teachers must themselves be expert problem solvers 

before they are to be considered proficient mathematics teachers.  But, I think this is 

asking too much of them!  George Polya was an expert (and, hence, proficient) problem 

solver as well as an expert teacher of mathematics, but to expect all teachers to be experts 

is both unreasonable and unnecessary.  After all, expert basketball coaches needn’t have 

been expert basketball players and expert violin teachers needn’t have been 

concertmasters.  Of course, teachers should be experienced problem solvers and should 

have a firm grasp of what successful problem solving involves, but care should be taken 
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not to confuse proficiency in teaching students to solve problems with expertise as 

problem solvers.  

Claim 4.  Problem solving isn’t always a high-level cognitive activity. 

A fourth observation is that the description of problem solving I have given above 

blurs the distinction between problem solving and other types of mathematical activity—I 

have more to say about this blurring later.  The distinctions that led historically to the 

isolation of mathematical problem solving as a research focus from other areas of study 

and the subsequent distinctions that resulted from this isolation are due in part to strong 

traditions of disciplinary boundaries (Lester & Kehle, 2003).4  This isolation led to 

subsuming mathematical understanding under problem solving.  But, the inverse makes 

more sense; that is, to subsume problem solving (and problem posing) under 

mathematical understanding and, hence, under mathematical activity.   By so doing, 

emphasis is placed on several other constructs that are important in being able to do 

mathematics — e.g., model building, generation of representations, constructing patterns 

of inference — that too often are not considered when problem solving is isolated from 

other forms of mathematical activity. 

Claim 5. Research tells us something about problem-solving instruction, but not nearly 

enough. 

Although research on mathematical problem solving has provided some valuable 

information about problem-solving instruction, we haven’t learned nearly enough (but 

see also the very last section of this article).  In a paper I co-authored about 20 years ago, 

                                                 
4  Indeed, some years ago, one mathematics education researcher asked me why I (and most other 
problem-solving researchers) studied problem solving in isolation from learning specific 
mathematics concepts and processes.  I had no good answer; she was correct and I couldn’t 
provide a compelling reason why we did so.  Today, I think the reason stems from our reliance on 
cognitive science for guidance in developing our research agendas and methods. 
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my co-author and I identified four reasons for this unfortunate state of affairs: (1) 

relatively little attention to the role of the teacher in instruction; (2) too little concern for 

what happens in real classrooms; (3) a focus on individuals rather than small groups or 

whole classes; and (4) the largely atheoretical in nature of problem-solving research 

(Lester & Charles, 1992).  I have discussed the fourth reason elsewhere (Lester, 2005), so 

will not discuss it here.  Instead, let me comment on the other three reasons.  (Interested 

readers may wish to read the provocative analysis of the state of mathematical problem-

solving research written by Lesh and Zawojewski (2007).  In their analysis they take 

issue with the nature and direction of nearly all the research over the past 50 years.) 

The role of the teacher.  More than twenty-five years ago, Silver (1985) pointed 

out that the typical research report might have described in a general way the 

instructional method employed, but rarely was any mention made of the teacher's specific 

role.  Some progress has been made since then (see, e.g., the edited volumes by Lester 

and Charles (2003) and Schoen and Charles (2003) and the review by Schoenfeld 

(1992)).  But, as useful as these efforts have been, they fall short of what is needed.  

Instead of simply considering teachers as agents to effect certain student outcomes, their 

role should be viewed as one dimension of a dynamic interaction among several 

dimensions of a system involving: the role of the teacher, the nature of classroom tasks, 

the social culture of the classroom, the use of mathematical tools as learning supports, 

and issues of equity and accessibility. Changing any of the dimensions of this system 

requires parallel changes in each of the other dimensions (Hiebert et al., 1997).  

Observations of real classrooms.  Several years ago, my colleague, Randy 

Charles, and I conducted a large-scale study of the effectiveness of an approach to 
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problem-solving instruction based on ten specific teaching actions (Charles & Lester, 

1984). The research involved several hundred fifth and seventh grade students in more 

than 40 classrooms over the period of one full school year.  The results were 

encouraging: students receiving the instruction benefited tremendously with respect to 

several key components of the problem-solving process.  However, despite the promise 

of our instructional approach, the conditions under which the study was conducted did 

not allow us to make extensive, systematic observations of classrooms.  Ours is not an 

isolated instance.  In particular, there has been a lack of descriptions of teachers' 

behaviors, teacher-student and student-student interactions, and the type of classroom 

atmosphere that exists.  It is vital that such descriptions be compiled if there is to be any 

hope of deriving sound prescriptions for teaching problem solving.  In the final section of 

this article I present a framework for research that, if used, might provide the sorts of 

rich, detailed descriptions I think we need. 

Focus on individuals rather than groups or whole classes.  Throughout most of 

the history research in mathematical problem solving (dating back about 50 years) the 

focus has been on the thinking processes used by individuals as they solve problems or as 

they reflect back on their work solving problems.  When the goal of research is to 

characterize the thinking involved in a process like problem solving, a microanalysis of 

individual performance seems appropriate.  However, when our concerns are with 

classroom instruction, we should give attention to groups and whole classes.  To be sure, 

small groups can serve as an appropriate environment for research on teaching problem 

solving, but the research on problem-solving instruction cannot be limited to the study of 

small groups.  In order for the field to move forward, research on teaching problem 
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solving needs to examine teaching and learning processes for individuals, small groups, 

and whole classes. 

 

A Model of Complex Mathematical Activity5 

In addition to the lack of attention to the role of the teacher in real classrooms and 

the focus on individuals rather than whole classes, the relative ineffectiveness of 

instruction to improve students' ability to solve problems can be attributed to the fact that 

problem solving has often been conceptualized in a simplistic way.  This naive 

perspective has two levels or "worlds": the everyday world of things, problems, and 

applications of mathematics and the idealized, abstract world of mathematical symbols, 

concepts, and operations.  In this naive perspective, the problem-solving process typically 

has three steps.  Beginning with a problem posed in terms of physical reality, the problem 

solver first translates the problem into abstract mathematical terms, and then operates on 

this mathematical representation in order to come to a mathematical solution of the 

problem.  This solution is then translated into the terms of the original problem.  

According to this view, mathematics may be, and often is, learned separately from its 

applications and (too often) with no attempt to connect new mathematics concepts to old 

ones.  Teachers who adhere to this perspective are very concerned about developing 

skillfulness in translating (so-called) real-world problems into mathematical 

representations and vice versa.  However, these teachers tend to deal with problems and 

applications of mathematics only after the mathematical concepts and skills have been 

introduced, developed, and practiced.  Many of the “problems” found in textbooks often 

                                                 
5  The discussion in this section is excerpted with only minor revision from Lester and Kehle 
(2003). 
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can be solved exactly as this naive perspective indicates.  But for more challenging, 

substantive problems, the problem solver cannot simply apply a previously learned 

procedure to solve the problem. In addition to translation and interpretation, these 

problems also demand more complex processes such as planning, selecting strategies, 

identifying sub-goals, choosing or creating appropriate representations, conjecturing, and 

verifying that a solution has been found.  For non-routine tasks, a different type of 

perspective is required, one that emphasizes the making of new meanings through 

construction of new representations and inferential moves (refer back to the description 

of problem solving Kehle and I (2003) have proposed). 

The new perspective, like the previous one, also contains two levels representing 

the everyday world of problems and the abstract world of mathematical concepts, 

symbols and operations.  In this perspective, however, the mathematical processes in the 

upper level are "under construction" (i.e., being learned, as opposed to already learned; 

coming to be understood, as opposed to being understood) and the most important 

features are the relationships between steps in the mathematical process (in the 

mathematics world) and actions on particular elements in the problem (in the everyday 

world).  It is in the forging of these relationships that results in the meaning making that 

is central to mathematical activity of all kinds.  At times the problem solver is learning to 

make abstract written records of the actions that are understood in a concrete setting.  

This involves the processes of abstraction and generalization.  And, at other times the 

problem solver attempts to connect a mathematical process to the real-world actions that 

the mathematical process represents.  Also, a problem solver who had forgotten the 

details of a mathematical procedure would attempt to reconstruct that procedure by 
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imagining the corresponding concrete steps in the world in which the problem was posed.  

As a result, typically the problem solver moves back and forth between the two worlds—

the everyday problem world and the mathematical world—as the need arises. 

But, although this perspective is an improvement over the original, it too falls 

short of what is needed because it does not account for many of the most important 

actions (both cognitive and non-cognitive) involved during real problem solving.  Even 

the modified perspective regards problem solving as somehow being different from other 

sorts of mathematical activity.  In my view, what is needed is to subsume problem 

solving within a much broader category, "mathematical activity,” and to give a prominent 

role to the metacognitive activity engaged in by the individual or group.6 

 Figure 1 below depicts mathematical behavior as a complex, involved, 

multiphase process that begins when an individual, working in a complex context (Box 

A), poses (or is given) a specific task to solve (the solid arrow between A and B).  To 

start solving the task, the individual simplifies the complex setting by identifying those 

concepts and processes that seem to bear most directly on the problem.  This simplifying 

and problem posing phase involves making decisions about what should be attended to 

and what can be ignored, developing a sense about how the essential concepts are 

connected, and results in a realistic representation of the original situation.  This realistic 

representation is a model of the original context from which the problem was drawn 

because it is easier to examine, manipulate, and understand than the original situation.  

Next comes the abstraction phase (solid arrow from B to C), which introduces 

mathematical concepts and notations (albeit perhaps idiosyncratic).  This abstraction 
                                                 
6 I should point out that this depiction is a representation of ideal, rather than typical, performance 
during an individual's work on some mathematical task.  It is ideal in the sense that it denotes key 
actions in which the individual should engage in order to obtain acceptable results. 
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phase involves the selection of mathematical concepts to represent the essential features 

of the realistic model.  Often the abstraction phase is guided by a sense of what a given 

representation makes possible in the subsequent computation phase.  The explicit 

representation of the original setting and problem in mathematical symbolism constitutes 

a mathematical representation of both the setting and the task/problem. 

Once a problem solver has generated a mathematical representation of the original 

situation, the realistic problem now becomes a specific mathematical problem related to 

the representation. This mathematical problem acquires a meaning all its own, becoming 

an isolated, well-defined mathematical problem (Box C).   

The third phase of the process (from C to D) involves manipulating the 

mathematical representation and deducing some mathematical conclusions—depicted in 

the figure by the “computing” arrow.  During this phase, the person draws upon her or his 

store of mathematical facts, skills, mathematical reasoning abilities, and so forth.  For 

example, the problem might call for a solution of a system of equations and solving this 

system of equations does not depend on the original context of the initial problem.  The 

final phase (from D to A, D to B, and D to C), then, should involve the individual in 

comparing the conclusions/results obtained with the original context and problem, as well 

as with the mathematical representation (refer to the dashed arrows between boxes).  But, 

the act of comparing does not occur only after conclusions are drawn and a solution is 

obtained.  Rather, it might take place at any time and at any point during the entire 

process. Indeed, this regular and continual monitoring—metacognitive activity—of one's 

work is a key feature of success on complex mathematical tasks.  In general, the act of 

comparing the current state of one's work, thinking, and decisions denotes how complex 



  Lester 

 

mathematical activity can be.  The degree to which the individual chooses to compare her 

or his current state with earlier states can be considered a determinant of task complexity 

and, in fact, is the primary way to distinguish “routine” from “non-routine” tasks (i.e., 

problems).  For example, performing routine calculations using whole numbers typically 

requires little comparing, whereas work on more complex tasks might necessitate quite a 

lot of comparing throughout ones work on it.  In brief, then, the degree to which a task 

can be considered problematic can be determined by the amount of “comparing” 

involved.  

 

Figure 1.  A model of complex mathematical activity 
 

To sum up, what Kehle and I have proposed is a blurring of the distinction 

between problem solving and other mathematical activity emerging from research on 

mathematical problem solving and constructivist thinking about learning.  Furthermore, 

we have proposed a blurring of task, person, mathematical activity, non-mathematical 
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activity, learning, applying what has been learned, and other features of mathematical 

problem solving.  A consequence of this blurring is that it necessitates some rethinking 

about the proficiencies mathematics teachers need.  In the next section I discuss these 

proficiencies in light of the preceding discussions. 

 

Proficiencies for Teaching Mathematics 

The debate over the merits of direct (explicit) instruction versus constructivist 

instruction has been raging for at least 50 years and any consideration of the 

mathematical proficiencies needed for teaching mathematics must be made in view of 

this debate.  More specifically, the identification of such proficiencies must take into 

account the assumptions that are being made about the nature of mathematics learning 

and instruction, as well as about instructional goals.  For example, a proponent of direct 

instruction (e.g., Kirschner, Sweller & Clark, 2006) might view learning as simply a 

matter of making a change in students’ long-term memories.  But for a constructivist 

teacher, in addition to making a change in students’ long-term memories, learning 

involves much more.  Constructivist teachers are concerned with (among other things) 

how to help students select and use good procedures for solving problems (Gresalfi & 

Lester, 2009).  Clearly, these quite different perspectives on what mathematics learning 

involves will have a tremendous influence on what teachers must be able to do in their 

classrooms (i.e., what proficiencies they need).  Furthermore, there is the matter of the 

teacher’s goals.  If problem solving is intended as the end result of instruction, one set of 

proficiencies for teaching is needed, but if problem solving is the means through which 

mathematical concepts, processes, and procedures are learned, then a different set of 
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proficiencies may be called for.  For example, the teacher for whom problem solving is a 

means, would likely need to be very proficient at listening to and observing students as 

they work on mathematical tasks (Davis, 1997; Yackel, 2003).  And, quite naturally, 

listening to students would play a much less important role for a teacher who mostly 

lectures.  Put more directly, consideration of how to include problem solving in a 

mathematical-proficiencies-for-teaching framework should be done in view of the 

assumptions the teacher makes about the nature of mathematics learning and the goals of 

instruction.   

But, what of the proficiencies needed to help students learn how to solve 

problems?  One consequence of subsuming problem solving under the broader heading 

“mathematical activity,” is that it becomes more difficult to specify a precise set of 

proficiencies teachers need.  To illustrate, consider the task “Which is more 2/3 or 2/5?”  

Does this task involve any problem solving on the part of the student?  Maybe, maybe 

not!  Of course, one can “cross multiply” to determine that 2/3 is more (or use some other 

previously learned procedure), or one may have had sufficient experience with fractions 

to simply “know” that 2/3 is more.  In these instances, one could argue that no problem 

solving is going on.  But suppose you are a 3rd grader7 who does not know of any 

procedures to decide which is more.  Without a prescribed method of attack, this task 

might be used to help you better understand the meanings of numerator and denominator 

and also help you see how useful one half can be as a fraction benchmark (Van de Walle, 

2003).  This is at the heart of what it means to teach via problem solving.  But, what 

                                                 
7  One needn’t be a 3rd grader to find this task problematic.  Over the past 4 years I have been 
tutoring unemployed adults who hope one day to pass the US high school equivalency exam 
(GED).  Almost to a person, they do not know how to solve this task when they begin to study 
with me. 
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proficiencies must teachers have who subscribe to a teaching via problem solving 

approach?  Of course, they must be adept at selecting good problems, at listening and 

observing, at asking the right questions, at knowing when to prod and when to withhold 

comment, as well as a host of other actions8.  These actions make up what Moore (1995) 

has called the “craft of teaching.”  Moore’s “image of a [proficient] teacher is that of a 

skilled craftworker, a master machinist say, who knows exactly what she must do, brings 

the tools she needs, does the work with straightforward competence, and takes pleasure in 

a job well done. She does her work right every day, and every day's work fits the larger 

plan of her project” (p. 5).  For Moore a craft is a “collection of learned skills 

accompanied by experienced judgment” (p. 5).  So, the question is “How does one 

become a craftsman?”   

Thirty years ago, Randy Charles and I wrote a book in which we laid out an 

instructional plan for teachers to follow in order to be effective in teaching students how 

to solve mathematics problems (Charles & Lester, 1982).  The plan focused on three 

phases of instruction—Before, During, and After—and was organized around 10 

“teaching actions.”  Since then, the three phases have appeared in different guises in 

various American elementary and middle school textbook series (e.g., the middle grades 

Connected Mathematics series organizes activities around Launch, Explore, and 

Summarize (Pearson Education Inc. 2011)).  The features of our plan that most clearly 

distinguish it from more “traditional” instructional plans have to do with the teacher’s 

role and the nature of the classroom environment.  However, this is far from sufficient; 

knowing about the teaching actions is simply not enough!  In addition to knowing what to 

                                                 
8 I, and various collaborators over the years, have used the word (teaching) “actions” to refer to 
what the teacher does during the act of teaching.   
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do, the teacher must also know when to do it and what the implications might be of the 

action taken.  In particular, teachers must be adept at: (1) designing and selecting tasks 

and activities, (2) listening to and observing students as they engage with problem-

solving activities, (3) making sure that instructional activities remain problematic for 

students, (4) focusing on the methods students use to solve problems and being familiar 

with problem-solving methods (e.g., heuristics, strategies) that are accessible to students, 

and (5) being able to tell the right thing at the right time (cf., Cai, 2010; DiMatteo & 

Lester, 2010; Hiebert, 2003).  Moreover, teachers and students share responsibility for 

creating and maintaining a classroom atmosphere that is conducive to exploring and 

sharing ideas, cooperating with each other, and risk taking (Stephan & Whitenack, 2003).  

Thus, for me, in addition to myriad other knowledge and skills, a proficient mathematics 

teacher must be skillful at — 

 Designing and selecting appropriate tasks for instruction 

 Making sense of and taking appropriate actions after listening to and 

observing students as they work on a task 

 Keeping tasks appropriately problematic for students 

 Paying attention to and being familiar with the methods students use to solve 

problems 

 Being able to take the appropriate action (or say the right thing) at the right 

time 

 Creating a classroom atmosphere that is conducive to exploring and sharing. 

To be sure, teachers who have command of these and related teaching actions and 

who also have considerable mathematics content knowledge appropriate for the level at 
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which they are teaching might be considered craftsmen.  But, I think what separates a 

craftsman from others has to do with the amount of planning and reflection that he or she 

has done prior to and after instruction.  Unfortunately, even though it seems clear to me 

that the type and amount of planning a teacher does have tremendous impact on what 

happens during instruction, teacher planning has been largely ignored as a factor of 

importance in research on problem-solving instruction.  Indeed, in most studies teacher 

planning has not even been considered because the teachers in these studies have simply 

implemented a plan that had been predetermined by the researchers, not the teachers.  

Furthermore, it is no longer warranted to assume that the planning decisions teachers 

make are driven totally by the content and organization of the textbooks used and, 

therefore, need not be considered as an object of research.  The challenge, then, is to 

determine ways to provide these teachers with opportunities to acquire the proficiencies 

needed to become craftsmen; opportunities that in my view are best provided through 

apprenticeship experiences in their real-world context and situation (Collins, Brown, & 

Newmann, 1990).  To date, too little attention has been paid to studying the design and 

implementation of apprenticeship programs for teacher education.  This lack of attention 

is unfortunate because I think apprenticeship training is the approach most likely to result 

in highly proficient teachers—that is, teacher craftsmen skilled at teaching mathematics 

via problem solving. 

 

A Framework for Research on Problem-solving Instruction 

Twenty years ago, Randy Charles and I developed a framework for research on 

problem –solving instruction that was a synthesis of previous conceptualizations of 
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teaching in general and mathematics teaching in particular (Lester & Charles, 1992).  

Unfortunately, to my knowledge, other researchers have not adopted this framework.  I 

still think it could serve us well in designing research on problem-solving instruction and 

I bring this article to a close by offering a slightly-modified sketch of what it consists of.   

The framework is comprised of four broad categories of factors that we consider 

essential in the conceptualization and design of research studies:  (1) Non-classroom 

factors, (2) Teacher planning, (3) Classroom processes, and (3) Instructional outcomes.  

Of course, the categories overlap and the factors within each interact both within and 

across categories.   

Category 1:  Non-classroom Factors 

What goes on in a classroom is influenced by many things that exist or take place 

apart from actual classroom instruction.  For example, the teacher's and students'  

knowledge, beliefs, attitudes, emotions, and dispositions all play a part in determining 

what happens during instruction.  Furthermore, the nature of the tasks used as well as the 

contextual conditions present outside the classroom also affect instruction (e.g., course 

schedules, school structures).  There are six types of factors: teacher presage 

characteristics, student presage characteristics, teacher knowledge and affects, student 

knowledge and affects, tasks features, and contextual (situational) conditions. 

Teacher and student presage characteristics.  These are characteristics of the 

teacher and students that are not amenable to change but which may be examined for 

their effects on classroom instruction.  In addition, presage characteristics serve to 

describe the individuals involved.  Typically, in experimental research these 

characteristics have potential for control by the researcher.  But, awareness of these 
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characteristics can useful in non-experimental research as well by helping researchers 

make sense of what they are observing.  Among the more prominent presage 

characteristics are age, sex, and previous experience (e.g., teaching experience, previous 

experience with the topic of instruction).  Factors such as previous experience may 

indeed be of great importance as we learn more about the ways knowledge teachers glean 

from experience influences practice. 

Teacher and student knowledge and affects.  The teacher's and students' 

knowledge (both cognitive and metacognitive) and affects (including beliefs) can 

strongly influence both the nature and effectiveness of instruction.  As a category, these 

teacher and student traits are similar to, but quite different from, presage characteristics.  

The similarity lies in the potential for providing clear descriptions of the teacher and 

students.  The difference between the two is that affects and knowledge may change, in 

particular as a result of instruction, whereas presage characteristics cannot. 

Task features.  Task features are the characteristics of the tasks used for 

instructional or assessment purposes.  Historically, at least five types of features serve to 

describe tasks: syntax, content, context, structure, and process (see Goldin & McClintock, 

1984).  Syntax features refer to the arrangement of and relationships among words and 

symbols in a task.  Content features deal with the mathematical meanings in the problem.  

Two important categories of content features are the mathematical content area (e.g., 

geometry, probability) and linguistic content features  (e.g., terms having special 

mathematical meanings such as "less than," "function," "squared").  Context features are 

the non-mathematical meanings in the task statement.  Furthermore, context features 

describe the problem embodiment (representation), verbal setting, and the format of the 



  Lester 

 

information given in the problem statement.  Structure features can be described as the 

logical-mathematical properties of a task.  Structure features are determined by the 

particular representation that is chosen for a problem.  For example, one student may 

choose to represent a task in terms of a system of equations, while another student may 

represent the same problem in terms of some sort of guessing process.  Finally, process 

features represent something of an interaction between task and student.  That is, 

although problem-solving processes (e.g., heuristic reasoning) typically are considered 

characteristics of the student, it is reasonable to suggest that a problem may lend itself to 

solution via particular processes.  A consideration of task process features can be very 

informative to the researcher in selecting tasks for both instruction and assessment. 

Contextual conditions.  These factors concern the conditions external to the 

teacher and students that may affect the nature of instruction.  For example, class size is a 

condition that may directly influence the instructional process and with which both 

teacher and students must contend.  Other obvious contextual conditions include 

textbooks used, community ethnicity, type of administrative support, economic and 

political forces, and assessment programs.  Also, since instructional method provides a 

context within which teacher and student behaviors and interactions take place, it too can 

at times be considered a factor within this category.  I should add that that these six areas 

of consideration do not necessarily cover all possible influences; it is likely that there are 

other influences that may be at least as important as the ones I have mentioned.  Rather, 

my intent is to point out the importance of paying attention to the wide range of factors 

that can have an impact on what takes place during instruction. 

Category 2:  Teacher Planning   
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Teacher planning is not clearly distinct from the other categories, in fact, it 

overlaps each of them in various ways.  Of particular interest for research are the various 

decisions made before, during and as a result of instruction about student presage 

characteristics, instructional materials, teaching methods, classroom management 

procedures, evaluation of student performance, and amount of time to devote to particular 

activities and topics.  Unfortunately, teacher planning has been given too little attention 

as a factor of importance in problem-solving instruction research.  Indeed, in most studies 

teacher planning has not even been considered because the teachers in these studies have 

simply implemented a plan that had been predetermined by the researchers, not the 

teachers.  Furthermore, it is no longer warranted to assume that the planning decisions 

teachers make are driven totally by the content and organization of the textbooks used 

and, therefore, need not be considered as an object of research.  A teacher's behavior 

while teaching either for or via  problem solving is certainly influenced by the teacher's 

knowledge and affects.  However, some of this behavior is likely to be determined by the 

kinds of decisions the teacher makes prior to entering the classroom.  For example, a 

teacher may have planned to follow a specific sequence of teaching actions for delivering 

a particular problem-solving lesson knowing that the exact ways in which these teaching 

actions are implemented evolve situationally during the lesson.  Or, if the knowledge 

teachers use to plan instruction is knowledge gleaned from previous instructional 

episodes, then we would search for those cases that significantly shape the craft 

knowledge teachers use as a basis for planning and action.  Future research should 

consider how teachers go about planning for problem-solving instruction and how the 

decisions made during planning influence actions during instruction. 
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Category 3:  Classroom Processes 

Classroom processes include the host of teacher and student actions and 

interactions that take place during instruction.  Four dimensions of classroom processes 

are apparent: teacher knowledge and affects; teacher behaviors; student knowledge and 

affects; and student behaviors.  

Both the teacher's and the students' thinking processes and behaviors during 

instruction are almost always directed toward achieving a number of different goals, 

sometimes simultaneously.  For example, during a lesson the teacher may be assessing 

the appropriateness of the small-group arrangement that was established prior to the 

lesson, while at the same time trying to guide the students' thinking toward the solution to 

a problem.  Similarly, a student may be thinking about what her classmates will think if 

she never contributes to discussions and at the same time be trying to understand what the 

task  confronting her is all about.  In our framework, we have restricted consideration to 

what the teacher thinks about and does to facilitate the students’ thinking and what the 

student thinks about and does to solve a problem.  We have not attempted to include a 

complete menu of objects or goals a teacher might think about during instruction. 

Teacher knowledge and affects. These processes include those attitudes, beliefs, 

emotions, cognitions and metacognitions that influence, and are influenced by, the 

multitude of teacher and student behaviors that occur in the classroom during instruction.  

In  particular, this dimension is concerned with the teacher's thinking and affects while 

facilitating students’  attempts to understand a task, develop a plan for solving it, carry 

out the plan to obtain an answer, and look back over the solution effort. 
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Teacher behaviors.  A teacher's knowledge and affects that operate during 

instruction give rise to the teacher's behaviors, the overt actions taken by the teacher 

during problem-solving instruction.  Specific teacher behaviors can be studied with 

regard to use (or non-use) as well as quality.  The quality of a teacher behavior can 

include, among other things, the correctness of the behavior (e.g., correct mathematically 

or correct given the conditions of the problem), the clarity of the action (e.g., a clear 

question or hint), and the manner in which the behavior was delivered (e.g., the verbal 

and nonverbal communication style of the teacher). 

Student knowledge and affects.  Similar to the teacher, this subcategory refers to 

the knowledge and affects that interact with teacher and student behaviors.  The concern 

here is with how students interpret the behavior of the teacher and how the students' 

thinking about a problem, their affects, and their work on the problem affects their own 

behavior.  Also of concern here is how instructional influences such as task features or 

contextual conditions directly affect a student's knowledge, affects, and behaviors. 

Student behaviors.  These behaviors include the overt actions of the student 

during a classroom problem-solving episode.  By restricting our attention to the problem-

solving phases mentioned earlier, we can identify several behaviors students might 

exhibit as they work on a task.  

Category 4:  Instructional Outcomes 

The fourth category of factors consists of three types of outcomes of instruction: 

student outcomes, teacher outcomes, and incidental outcomes.  Most instruction-related 

research has been concerned with short-term effects only.  Furthermore, transfer effects, 
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effects on attitudes, beliefs, and emotions, and changes in teacher behavior have been 

considered only rarely.   

Student outcomes.  Both immediate and long-term effects on student learning are 

included in this category, as are transfer effects (both near and far transfer).  Illustrative 

of a student outcome, either immediate or long-term, is a change in a student's skill in 

implementing a particular problem-solving strategy (e.g., guess and check, working 

backwards).  An example of a transfer effect is a change in students' performance in 

solving non-mathematics problems as a result of solving only mathematics problems.  

Also, of special importance is the consideration of changes in students' beliefs and 

attitudes about problem solving or about themselves as problem solvers and the effect of 

problem-solving instruction on mathematical skill and concept learning; for example, 

how is computational skill affected by increased emphasis on the thinking processes 

involved in solving problems? 

Teacher outcomes.  Teachers, of course, also change as a result of their 

instructional efforts.  In particular, their attitudes and beliefs, the nature and extent of 

their planning, as well as their classroom behavior during subsequent instruction are all 

subject to change.   Each problem-solving episode a teacher participates in changes her or 

his craft knowledge. Thus, it is reasonable to expect that experience affects the teacher's 

planning, thinking, affects, and actions in future situations. 

Incidental outcomes.  Increased performance in science (or some other subject 

area) and heightened parental interest in their children's school work are two examples of 

possible incidental outcomes.  Although it is not possible to predetermine the relevant 
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incidental effects of instruction, it is important to be mindful of the potential for 

unexpected “side effects.” 

Research on teaching in general points to the important role a teacher's knowledge 

and affects play in instruction.  Questions such as the following need to be investigated : 

What knowledge (in particular, content, pedagogical, and curriculum knowledge)  do 

teachers need to be effective as teachers of problem solving?  How is that knowledge best 

structured to be useful to teachers?  How do teachers' beliefs about themselves, their 

students, teaching mathematics, and problem solving influence the decisions they make 

prior to and during instruction?  

The forgoing analysis of factors to be considered for research on problem-solving 

instruction is intended as a general framework for designing investigations of what 

actually happens in the classroom during instruction.  As I mentioned earlier, there may 

be other important factors to be included in this framework and that certain of the factors 

may prove to be relatively unimportant.  Notwithstanding these possible shortcomings, 

this framework could serve as a step in the direction of making research in the area more 

fruitful and relevant. 

 

A Final, More Positive Note 

I do not intend for my remarks to give the impression that I think mathematical 

problem solving research has not amounted to much during the past 40 years or that 

current research efforts are misguided.  Indeed, quite the opposite is the case!  Several 

important principles have slowly emerged from the research since the early 1970s.  I end 

this article by listing these principles without comment: each principle could serve as the 
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basis for an article or monograph.  My hope is that this list, like much of the rest of my 

article, will stimulate discussion among those who are interested in pursuing a research 

agenda that includes problem solving at its core.   

1. The prolonged engagement principle. In order for students to improve their 

ability to solve mathematics problems, they must engage in work on 

problematic tasks on a regular basis, over a prolonged period of time.  

2. The task variety principle.  Students will improve as problem solvers only if 

they are given opportunities to solve a variety of types of problematic tasks (in 

my view, principles 1 and 2 are the most important of the seven).   

3. The complexity principle.  There is a dynamic interaction between 

mathematical concepts and the processes (including metacognitive ones) used 

to solve problems involving those concepts.  That is, heuristics, skills, control 

processes, and awareness of one’s own thinking develop concurrently with the 

development of an understanding of mathematical concepts.  (This principle 

tells us that problem- solving ability is best developed when it takes place in 

the context of learning important mathematics concepts.)  

4. The systematic organization principle.  Problem-solving instruction, 

metacognition instruction in particular, is likely to be most effective when it is 

provided in a systematically organized manner under the direction of the 

teacher. 

5. The multiple roles for the teacher principle.  Problem-solving instruction that 

emphasizes the development of metacognitive skills should involve the 

teacher in three different, but related, roles: (a) as an external monitor, (b) as a 
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facilitator of students' metacognitive awareness, and (c) as a model of a 

metacognitively-adept problem solver.  

6. The group interaction principle.  The standard arrangement for classroom 

instructional activities is for students to work in small groups (usually groups 

of three or four).  Small group work is especially appropriate for activities 

involving new content (e.g., new mathematics topics, new problem-solving 

strategies) or when the focus of the activity is on the process of solving 

problems (e.g., planning, decision making, assessing progress) or exploring 

mathematical ideas. 

7. The assessment principle.  The teacher's instructional plan should include 

attention to how students' performance is to be assessed.   In order for students 

to become convinced of the importance of the sort of behaviors that a good 

problem-solving program promotes, it is necessary to use assessment 

techniques that reward such behaviors. 
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Abstract: Mathematical tasks are key ingredient to foster teachers and students’ 
development and construction of mathematical thinking. The use of distinct 
computational tools offers teachers a variety of ways to represent and explore 
mathematical tasks which often extends problem solving approaches based on the use of 
paper and pencil. We sketch a framework to characterize ways of reasoning that emerge 
as result of using computational technology to solve a task that involves dealing with 
variation phenomena.     
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Introduction 

It is widely recognized that the use of computational technology offers teachers 

and students different ways to represent and explore mathematical problems or concepts. 

There is also evidence that different tools might offer learners different opportunities to 

think of problems in order to represent, explore, and solve those problems. What tools 

and how should teachers integrate them in their teaching environments? What 

instructional goals should teachers aim with the use of technology? In accordance to 

Hegedus & Moreno-Armella (2009) “technology is here to transform thinking, and not to 

serve as some prosthetic device to prop up old styles of pedagogy or curriculum 

standards” (p. 398). Thus, it becomes important for teachers to discuss approaches to use 

technology in order to guide their students to develop ways of thinking that favour their 

comprehension of mathematical concepts and problem solving experiences. In particular, 

teachers should discuss the extent to which the use of the tools helps them represent and 
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explore mathematical tasks in ways that enhance and complement problem solving 

processes that rely on the use of paper and pencil environment.  The use of computational 

tools in learning scenarios implies that teachers need to pay attention to and reflect upon 

aspects that involve:  

(a) The process shown by the subject to transform the artefact (material object) 

into an instrument to represent, to comprehend mathematical ideas, and to solve 

problems;  

(b) The type of tasks used to foster students’ mathematical thinking;  

(c) The ways of reasoning exhibited by the subjects during problem solving 

activities;  

(d) The role of teachers during problem solving sessions; and in general, 

(e) The structure and dynamics of scenarios that promote the use of different tools 

to learn mathematics and solve problems.  

We introduce a pragmatic framework for teachers to organize learning activities 

that promote the systematic use of technology. The framework provides teachers with the 

opportunity to discuss aspects related to the presentation and exploration of mathematical 

tasks through the use of a dynamic software in problem solving environments. The aim is 

to identify and reflect on possible routes that teachers or researchers can follow to 

structure and organize problem-solving activities that enhance the use of technology with 

the purpose of furthering mathematics learning. We highlight a set of questions that 

teachers can think of as a way to delve into the problem through the use of technology. 
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To this end, we chose a generic1 task that involves a variation phenomenon to illustrate 

how the use of the tool fosters an inquiring approach to make sense of the posed 

statement and to promote different ways of reasoning to explore and solve the task 

(NCTM, 2009). Thus, focusing on ways to represent a variation phenomenon through the 

tool demands that teachers identify, express, and explore mathematical relationships in 

terms of visual, numeric, graphic, and algebraic approaches. “Conceptualization of 

invariant structures amidst changing phenomena is often regarded as a key sign of 

knowledge acquisition” (Leung, 2008, p. 137). Thus, teachers need to work on tasks 

where the use of the tools provides them a set of affordances to identify and perceive 

what parameters vary and what are maintained invariant within the problem structure.  

 

Background and Rationale  

Lester (2010) quotes the online Encarta World English Dictionary to define a 

framework: “a set of ideas, principles, agreements, or rules that provides the basis or the 

outline for something that is more fully developed at a later stage” (p. 60). Our notion of 

framework includes initial arguments that describe patterns associated with the use of a 

dynamic software in mathematical problem solving. “ A framework tells you what to 

look at and what its impact might be” (Schoenfeld, 2011, p. 4). It is a pragmatic 

framework that consists of episodes that could help practitioners re-examine and contrast 

those frameworks that explain learners competences exhibited in paper and pencil 

environments. It becomes a scaffolding tool to reflect on issues related to the use of tools 

in learning scenarios.  

                                                 
1 Generic in the sense that the task represents a family of tasks where it is possible to 
explore or examine optimization behaviours of the parameters involved in the task.  
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Schoenfeld (1985) proposed a framework to explain students’ problem solving 

behaviours in terms of what he calls basic resources, cognitive and metacognitve 

strategies, and students’ beliefs. Schoenfeld’s framework came from analyzing and 

categorizing experts and students’ problem solving approaches that involve mainly the 

use of paper and pencil tools. What happens when subjects use systematically 

computational tools to make sense of problem statement, represent, explore and solve 

problems? We argue that the use of technology introduces new information to 

characterize the problem solver’s proficiency. For instance, one of the tasks used by 

Schoenfeld involves asking the students to draw with straightedge and compass a circle 

that is tangent to two intersecting lines where one point of tangency is a given P on one 

line. Schoenfeld reports that students formulated several conjectures about the position of 

the centre of such a tangent circle: (a) The centre of the tangent circle C is the midpoint 

of the line segment between P and the point Q, where P and Q are equidistant from the 

point of intersection V (Figure 1a); (b) The centre of the circle is the midpoint of segment 

of the circular arc from P to Q that has centre V and radius |PV| (Figure 1b), etc. 

(Schoenfeld, 2011, p. 31).  

 

Figure 1a: A student conjecture 

 

Figure 1b: Another student conjecture 

Schoenfeld stated that the students picked up the straightedge and compass, tried 

out their conjecture, and either accepted or rejected it on the basis of how good their 
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drawing looked.  With the use of a dynamic software “good drawing” doesn’t depend on 

subject’s skills to manage the straightedge and compass; rather, the tool provides the 

affordances (precision of drawings, parameter movement, quantification of parameters, 

loci, etc.) to deal or explore conjectures. That is, the use of a dynamic software provides 

teachers ways to initially visualize and test empirically conjectures and, they often access 

or develop relevant knowledge needed to verify and prove those conjectures (Moreno-

Armella & Sriraman, 2005; Santos-Trigo, 2010). For example, in Figures 2a and 2b, the 

dotted circle drawn with the software provides elements to reject the corresponding 

conjectures. Thus, the use of the tool offers relevant information to characterize and 

foster the students’ problem solving competences. For example, students can explore 

visually that the centre of the tangent circle lies on the perpendicular line to line PV at P 

(Figure 2c) and use that information to construct a formal approach based on properties 

embedded in that visual approach. 

Figure 2a: A student conjecture Figure 2b: Another student conjecture 
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Figure 2c: The centre of the tangent circle lies on the perpendicular to PV that passes 

through P. 

We argue that practitioners interested in using computational tools in their 

learning activities can find in the problem solving episodes described in the next section a 

quick reference to the type of mathematical discussions that might emerge during the 

problem solving sessions.  In addition, the episodes might provide directions to structure 

a lesson plan where empirical, visual, graphic, and formal approaches can be considered 

to organize a didactic route. We contend that the episodes can provide relevant 

information that relates to what Jackiw and Sinclair (2009) call first and second order 

effects of the use of the software (referring to The Geometer’s Sketchpad) in learning. 

“First-order effects are a direct consequences of the affordance of the environment; 

second-order effects are then a consequence of these consequences, and usually relate to 

changes in the way learners think, instead of changes in what learners do” (p. 414). That 

is, teachers could use the affordances associated with the software to encourage their 

students to think of novel ways to represent dynamically problem situations. Software’ 

affordances (dragging, finding loci, quantifying parameters, etc.) provide ways to observe 

changes or invariance of involved parameters. As a consequence, the use of the tool 

allows the problem solver to develop ways of reasoning to examine parameters 

behaviours that emerge as a result of moving mathematical objects within the task 

representation or configuration. Heid & Blume (2008) stated “[t]he nature of a 

mathematical activity depends not only on the mathematical demands of the task but also 

on the process of the task as constructed by the doer” (p. 425). Thus, teachers with the 
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use of the tool might guide their students to think about the problem in different ways and 

to discuss concepts and processes that appear during the exploration of the task. 

 

A problem-solving episodes to deal with phenomena of variation 

An example is used to illustrate, in terms of episodes, a route to think of the use of 

technology to represent and explore the area variation of an inscribed parallelogram. The 

first episode emphasizes the relevance for the problem solvers to comprehend the 

statement in order to construct a dynamic representation that can help them visualize 

parameter behaviours.  

 

The task 

Given any triangle ABC, inscribe a parallelogram by selecting a point P on one of 

the sides of the given triangle. Then from point P draw a parallel line to one of the sides 

of the triangle. This line intersects one side of the given triangle at point Q. From Q draw 

a parallel line to side AB of the triangle. This line intersects side AC at R. Draw the 

parallelogram PQRA (Figure 3). How does the area of inscribed parallelogram APQR 

behave when point P is moved along side AB? Is there a position for point P where the 

area of APQR reaches a maximum value? (Justify). 

 
A B

C

P

QR
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Figure 3: Drawing a parallelogram inscribed into a given triangle. 

 

Comprehension Episode 

Polya (1945) identifies the process of understanding the statement of a problem as 

a crucial step to think of possible ways for solving it. Understanding means being able to 

make sense of the given information, to identify relevant concepts, and to think of 

possible representations to explore the problem mathematically. The use of technology 

could help teachers focus on the construction of a dynamic model as a means to pose and 

explore questions that lead them to comprehend and make sense of tasks. 

The comprehension stage involves questioning the statement and thinking of the 

use of the tool to make sense and represent the task. For instance, what does “for any 

given triangle” mean and how this can be expressed through the software?, what 

information does one need to draw any triangle?, are there different ways to inscribe a 

parallelogram into a given triangle?, and how can one draw a dynamic model of the 

problem? are examples of questions where the problem solver could rely on the tool to 

explore and discuss the problem. Thus, a route to answer these questions might involve 

using Cabri-Geometry or The Geometer’s Sketchpad to draw triangle ABC (Figure 4) and 

from P on AB draw a parallel line to CB (instead of AC). This line intersects side AC and 

from that point of intersection, one can draw a parallel line to AB that intersects BC, thus, 

the two intersection points and point P and B form an inscribed parallelogram, the 

problem solver can ask: how is the former parallelogram related to the one that appears in 

Figure 3? Do they have the same area for the same position of P? How can we recognize 

that for different positions of point P the area of the parallelogram changes? This problem 
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comprehension phase is important not only to think of the task in terms of using the 

software commands, but also to identify and later examine possible variations of the task. 

For example, how does the area of a family of inscribed parallelograms, generated when 

P is moved along AB, change (Figure 4)? 

 
Figure 4: Another way to inscribe a parallelogram in a given triangle. 

 

Comment 

Making sense of the problem statement is a crucial step in any problem solving 

approach. The use of a dynamic software plays an important role in initially 

conceptualizing the statement as an opportunity to pose and explore a set of questions. 

That is, the use of the tool demands that the problem solver thinks of the statement in 

terms of mathematical properties to use the proper software commands to represent and 

explore the problem (Santos-Trigo & Espinosa-Pérez, 2010). In this case, teachers can 

work on the task in order to identify task’s sketches that can help their students focus 

their attention to particular concepts or explorations. Of course, the posed questions don’t 

include all possible routes to examine the statement; rather they illustrate an inquiry 

method to guide the problem solver’s reflection. 
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C
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A Problem Exploration Episode  

Teachers can use the software to draw a triangle by selecting three non- collinear 

points and discuss conditions needed to draw it when for example three segments (instead 

of three points) are given (the triangle inequality). The use of the software allows moving 

any vertex to generate a family of triangles. This process broadens the cases for which the 

problem can be analyzed. Then, they can select a point P on side AB to draw the 

corresponding parallels to inscribe the parallelogram. With the help of the software it is 

possible to calculate the area of the parallelogram and observe area values change when 

point P is moved along side AB. Thus, it makes sense to ask whether there is a position of 

P in which the area of the inscribed parallelogram reaches either its maximum or 

minimum value. By setting a Cartesian system (an important heuristic) as a reference and 

without using algebra, it is possible to construct a function that associates the length of 

segment AP with the area value of the corresponding parallelogram. Figure 5 shows the 

graphic representation of that function. The domain of the function is the set of values 

that represents the lengths of AP when point P is moved along side AB. The range of that 

function is the corresponding area values of the parallelogram associated with the length 

AP. This graphic representation can be obtained through the software by asking: What is 

the locus of point S (the coordinates of point S are length AP and area of APQR) when 

point P moves along the side AB? It is important to observe that the graphic 

representation is obtained without defining explicitly the algebraic model of the area 

change of the parallelogram. 
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Figure 5: Representation and visual exploration of the problem. 

This graphic approach to solve the problem provides an empirical solution. Both 

visually and numerically it is possible to observe that in the given triangle the maximum 

area of the inscribed parallelogram is obtained when P is situated at 2.30 cm from point 

A. At this point, the area value of the parallelogram is 8.56 cm2. Based on this 

information a conjecture emerges: When P is the midpoint of segment AB, then the 

corresponding inscribed parallelogram will reach the maximum area value. Graphically 

the behaviour of tangent line to the curve behaves at different points can be observed 

(Figure 5). It can be seen that when the slope of the tangent line to the area graph is 

positive the function increases, but when the slope is negative the function area 

decreases.  

Are there other ways to inscribe a parallelogram in triangle ABC? Figure 6 shows 

three ways to draw an inscribed parallelogram and all of them have the same area for 

different positions of point P. Also, Figure 7 shows that when point P is the midpoint of 

side AB then triangle ABC can be divided into four triangles with the same areas. 
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Figure 6: Inscribing three parallelograms in triangle ABC. 

 
Figure 7: When point P is situated at the midpoint of segment AB, then triangles APR, 

PQR, PBQ, and RQC have the same area. 

From Figures 6 and 7 two conjectures emerge: (i) the three inscribed 

parallelograms always have the same area for different positions of point P, and (ii) when 

point P is the midpoint of segment AB, the four triangles always have the same area and 

the maximum area of the inscribed parallelogram is half the area of the original or given 

triangle. Thus, the use of the tool provides an opportunity for the problem solver to 

simultaneously examine properties of figures that within the configuration. These 

conjectures are proved further down. 

 

Comment 
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The dynamic representation becomes a source that generates mathematical 

conjectures as a result of moving objects within the configuration. Exploring different 

ways to inscribe the parallelogram leads to formulate two related conjectures. In addition, 

the use of the tool allows graphing the area’s variation without defining explicitly an 

algebraic model. Thus, it is possible to think of a functional approach, without defining 

the function algebraically, that associates the position of point P (for example, the 

distance between AB, BP or AC) with the corresponding area value. Figure 5 provides a 

visual and numerical approach to describe the parallelogram’s area behaviour. 

 

The Searching for Multiple Approaches Episode  

We argue that if students are to develop a conceptual understanding of 

mathematical ideas and problem solving proficiency, they need to think of different ways 

to solve a problem or to examine a mathematical concept. In this context, the visual and 

empirical approaches used previously to explore the problem provide a basis to introduce 

other approaches. We argue that each approach to the problem demands that the problem 

solver not only think of the problem in different ways; but also to use different concepts 

and resources to solve it. 

 

Analytical approach  

In this approach, the use of the Cartesian system becomes important to represent 

the objects algebraically. The problem can be thought in general terms as shown below.  
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Figure 8: Using a Cartesian system to construct an algebraic model of the problem 

 

General case 

Without loosing generality, we can always situate the Cartesian system in such a way 

that one side of the given triangle can be on the x-axis and the other side on line 

y  m1x (Figure 8). Point P will be located on side AB and its coordinates will be 

P(x1,0). Point B(x 2 ,0)is vertex B of the given triangle (Figure 8). The general goal 

is to represent the area of parallelogram APQR in terms of known parameters.  This 

process leads to represent the area in terms of one variable ( AP  x1) as: 

A(x1) 
m1m3 x1

2  x 2 x1 
m1 m3 . The roots of A(x1) (a quadratic function) are 0 and x2. 

Also, this function has a maximum value if and only if 

m1m3

m1 m3

 0
. We are 

assuming that m1  0. The assumption on the triangle location guarantees that 

m3 and m1 m3 have opposite signs. By a symmetric argument, A(x1) reaches its 

maximum at the midpoint of the interval 0, x2 , that is, at 
x1 

x2

2 .  

1
x

1

y y = m1x

y = m1(x - x1)

y = m3(x - x2)

A
B(x2, 0)

C

P(x1, 0)
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Another way to determine the maximum value of this expression is by using calculus 

concepts:
A' (x1)

m1m3 (2x1  x 2 )

m1 m 3 , the critical points are obtained when A' (x1)  0, 

we have that
x1 

x2

2  which is the solution of the equation, then the function A(x1)

will reach its maximum value at 2
2

1

x
x 

. This is because A ''(x1) 
m1m3

m1  m3

 0 . Thus, 

this result supports the conjecture formulated previously in the graphic approach. 

 

General case 

It is possible to use a hand-held calculator to find the maximum area for the case 
shown in Figure 9. In this case, we have that m1  72 /85; m3  10.33; and 

x2  6.6cm.  

 
Figure 9: Finding the equations of lines with the use of the tool. 

Figure 10 shows the algebraic operation carried out to get the point where the 

function reaches its maximum value and Figure 11 shows its graphic representation. 
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Figure 10: Using the derivative to find the maximum of the function area. 

 

 
Figure 11: Graphic representation of the function area. 

 

A Geometric approach  

The goal is to use geometric properties embedded in the problem’s representation 

to construct an algebraic model. In Figure 12, it can be seen that: 

Triangle ABC  is similar to triangle PBQ , this is because angle PQB is 

congruent to angle ACB (they are corresponding angles) and angle ABC is the same as 

angle PBQ. Based on this information, a

xah
h

)(
1




 and the area of APQR can then be 

expressed as 1xhA  , that is,
A(x)  x

h(a  x)

a




 . This latter expression can be written as

a

hx
xhxA

2

)( 
. This expression represents a parabola. 

A' (x)  h  2hx
a , now if 
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A' (x)  h  2hx
a

 0
, then x  a /2. Now, we observe that 0'' A  for any point on the 

domain defined for A(x), therefore, there is a maximum relative for that value.  

 

Figure 12: Relying on geometric properties to construct an algebraic model. 

During the comprehension and exploration episodes two conjectures emerged, the 

first one (area of parallelogram APQR is the same as area of parallelogram PBQ’R’) can 

be proved by considering parallelogram APTR’ (Figure 7).  It is observed that triangles 

APR’ and TR’P are congruent and triangles RR’T’ and TQQ’ are also congruent (SSS). 

Then, we have that quadrilaterals APT’R and T’QQ’R’ have equal areas, also, the area of 

triangle PQT’ is the same as the area of triangle PQB. Based on this information, we have 

that the area of APQR is the same as area of PBQ’R’.   

The second conjecture that involves showing that the four triangles have the same 

area can be proved by observing that the triangles are part of three parallelograms 

(APQR, PBQR and PQCR) that overlap each other (Figure 7). Then the overlapping 

triangle PQR has the same area as the others because they share a diagonal as a side of 

each corresponding parallelogram. Therefore, the maximum value of the inscribed 

parallelogram is half the area of the given triangle (∆ABC).  

 

Comment 

AB = a

AP = x

x a - x

h1

h

A
B

C

P

QR

M N
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An important feature of the frame is that teachers should always look for different 

ways to solve and examine the tasks. The common goal in the task is to represent and 

explore the area model, however the approaches used to achieve this goal offer tearcher 

the opportunity to focus on diverse concepts and resources as a way to construct the 

model. For example, the algebraic model relies on representing and operating 

mathematical objects analytically while the geometric approach is based on using 

triangles’ properties to define the area model. It is also observed that the general model 

can be tested by assigning particular coordinates to the original triangle vertices. Thus, 

problem solvers have the opportunity to test their initial conjectures obtained visually and 

empirically by using now the general result (Figure 10 and 11). The use of a hand-held 

calculator, in general, makes easy to operate the algebraic expressions and as a 

consequence learners could focus their attention to discuss the meaning of the results.  

Each approach relies on using different concepts and ways to deal with the involved 

relations. As a consequence, the problem solver can contrast strengths and limitations 

associated to each approach. 

 

An extension  

In figure 13, we draw a line passing through points PR (vertices of parallelogram 

APQR).  With the use of the software, we ask for the locus of line PR (envelope) when 

point P is moved along side AB. Visually, the locus (tangent points) seems to be a conic 

section, the goal is to show that it holds properties that define that figure.  
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Figure 13: What is the locus of line PR when point P is moved along side AB? 

Again, with the use of the tool it is shown that the locus is a parabola whose focus 

and directrix are identified in Figure 14. It is also shown that when point M is moved 

along the locus the distance from that point to the directrix (L) and to point F (focus of 

the parabola) is the same (this property defines a parabola). 

 
Figure 14: The locus of line PR when point P is moved along segment AB is a parabola. 

 

Comment 

Some serendipitous results or relations might appear as a result of introducing 

other objets within the configuration. In this case, adding a line PR to the configuration 

led to identify a conic section. Thus, the use of the tool offers a means to think of 
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mathematical connections that are not easy to identify with the only use of paper and 

pencil approaches. 

 

The Integration Episode and Reflections  

It is important and convenient to reflect on the processes involved in the distinct 

phases that characterize an approach to solve mathematical problems that fosters the use 

of computational technology. Initially, the comprehension of the problem’s statements or 

concepts involves the use of an inquiry approach to make sense of relevant information 

embedded in those concepts or statements. This enquiry process provides the basis to 

relate the use of the tools and ways to represent dynamically the problem or situation. A 

dynamic model becomes a source from which to explore visually and numerically the 

behaviour of parameters, as a result of displacing some elements within the problem 

representation. In particular, it might be possible to construct a functional relationship 

between a variable, for example the variation of the side AP of the parallelogram and its 

corresponding area.  

 Two distinct ways to construct an algebraic model of the area variation 

were pursued; one involves the use of the Cartesian system to identify the equations 

associated with some elements of the model. The second way relies on identifying similar 

triangles in the inscribed parallelogram whose properties led to the construction of the 

area model. Both approaches, the analytic and geometric, converge in the search for the 

algebraic model. The algebraic model represents the general case and it can be 

“validated” by considering the information of the triangle used to generate the visual 

model.   In addition, it can be used to explore some of the relations that were detected 
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during the visual approach. For example, to identify the intersection points of line y  k 

and the area model
A(x1) 

m1m3 x1
2  x 2 x1 

m1 m3  (Figure 5) we solve the equation 

k 
m1m3 x1

2  x 2 x1 
m1 m3   for x1. Thus, the discriminant of this quadratic equation 

 provides useful information to interpret the 

relationship between line y  k and the graph of the area model 

A(x1) 
m1m3 x1

2  x 2 x1 
m1 m3 . When the discriminant is zero the line intersects the graph at 

the maximum point, when it is greater than zero, there are two intersection points and 

when the discriminant is less than zero, then the line does not intersect the area’s graph. 

 Concluding, the systematic use of computational tools in problem solving 

approaches led us to identify a pragmatic framework to structure and guide learning 

activities in such a way that teachers can help the students develop mathematical 

thinking. A distinguishing feature of the problem solving episodes is that constructing a 

dynamic model of the phenomena provides interesting ways to deal with them from 

visual and empirical approaches. Later, analytical and formal methods are used to support 

conjectures and particular cases that appear in those initial approaches. The NCTM 

(2009) recognizes that reasoning and sense making activities require for students to 

gradually develop levels of understanding to progress from less formal reasoning to more 

formal approaches.  

The use of computational tools provides a basis not only to introduce and connect 

empirical and formal approaches, but also to use powerful heuristics as dragging objects 
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and finding loci of particular objects within the dynamic problem representation. As 

Jackiw & Sinclair (2009) pointed out “Dynamic Geometry is revealed as a technological 

capability to produce seemingly limitless series of continuously-related examples, and in 

so doing, to represent visually the entire phase-space or configuration potential of an 

underlying mathematical construction” (p. 414). Throughout the problem solving 

episodes we show that it is important for teachers to conceive of a task or problem as an 

opportunity for their students to represent, explore and examine the task from diverse 

perspectives in order to formulate conjectures and to look for ways to support them.  The 

diversity of approaches allows them to contrast and relate different concepts and ways to 

reason about their meaning and applications. In this context, the use of the tools opens up 

new windows to frame and encourage teachers and students’ mathematical discussions 

 

Remarks 

Is there any way to characterize forms or ways of mathematical reasoning that 

emerge as a result of using computational tools in problem solving approaches? In which 

ways does this reasoning complement problem solving approaches that rely on the use of 

paper and pencil?  Thinking of the task in terms of the affordances provided by the tools 

demands that problem solvers focus their attention on ways to take advantage of the 

opportunities offered by the tool to represent and explore the problem. For example, the 

use of the tool to construct a dynamic model of a task not only becomes relevant to 

identify and formulate series of conjectures or mathematical relations but also to reason 

about the task in terms of graphic and visual approaches without relying, at this stage, on 

an analytic model. In addition, with the use of the software becomes natural and easy to 
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extend the analysis of a case to a family of cases. For example, by moving any vertex of 

triangle ABC, it is possible to verify that all the relations found during the analysis of the 

task are also true for a family of triangles that result when moving one the vertices. With 

the use of the tool it is often possible to generate loci of points or lines within the model 

or to identify parameter behaviours without defining the corresponding algebraic model. 

In addition, the empirical and visual approaches often provide important information to 

present formal arguments to support conjectures. In this context, it is clear that the 

software approach could play an important role to complement and construct formal or 

analytic approaches.    

 

Acknowledgement: We thank the support received from projects EDU2011-29328, EDU2008-05254, and 

Conacyt-168543 during the development of this article.  
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Abstract: This paper will be concerned with undergraduate and graduate students’ 
problem solving as they encounter it in attempting to prove theorems, mainly to satisfy 
their professors in their courses, but also as they conduct original research for theses and 
dissertations. We take Schoenfeld’s (1985) view of problem, namely, a mathematical task 
is a problem for an individual if that person does not already know a method of solution 
for that task. Thus, a given task may be a problem for one individual, who does not 
already know a solution method for that task, or it may be an exercise for an individual 
who already knows a procedure or an algorithm for solving that task. 
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A Continuum of Tasks from Very Routine to Very Non-routine  

While what is a problem depends on what a solver knows, it is possible for most 

mathematics teachers to judge what is difficult for most students in a given class. Thus, 

we see mathematical tasks for a given class, such as a calculus class, on a continuum 

from those that are very routine to those that are genuinely difficult problems (Selden, 

Selden, Hauk, & Mason, 2000). At one end, there are very routine problems which mimic 

sample worked problems found in textbooks or lectures, except for minor changes in 

wording, notation, coefficients, constants, or functions that are incidental to the way the 

problems are solved. Such problems are often referred to as exercises (and might not be 

considered to be problems at all in the problem-solving literature).  
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The vast majority of exercises in calculus textbooks are of this nature. Lithner 

(2004) distinguished three possible solution strategies for typical calculus textbook 

exercises:  identification of similarities (IS), local plausible reasoning (LPR), and global 

plausible reasoning (GPR). In IS, one identifies surface features of the exercise and looks 

for a similar textbook situation -- an example, a rule, a definition, a theorem. Without 

consideration of intrinsic mathematical properties, one simply copies the procedure of 

that situation. In LPR, one identifies a slightly similar textbook situation, but one in 

which a few local parts may differ. The solution strategy is to copy as much as possible 

from that similar situation, modifying local steps as needed. In GPR, the strategy is 

mainly based on analyzing and considering intrinsic mathematical properties of the 

exercise, and using these, a solution is constructed and supported by plausible reasoning. 

Lithner selected a textbook used in Sweden [Adams' Calculus: A Complete Course (5th 

ed.), Addison-Wesley], and worked through and classified solution strategies for 598 

single-variable calculus exercises. He found 85% IS, 8% LPR, and 7% GPR. 

Furthermore, he concluded that "it is possible in about 70% of the exercises to base the 

solution not only on searching for similar situations, but on searching only the solved 

examples."   

Moving toward the middle of the continuum, there are moderately routine 

problems which, although not exactly like sample worked problems, can be solved by 

well-practiced methods, for example, ordinary related rates or change of variable 

integration problems in a calculus course.1 Moving further along the continuum, there are 

moderately non-routine problems, which are not very similar to problems that students 

                                                 
1 Sandra Marshall (1995) has studied how students can develop schema (well-practiced 
routines) to reliably guide the solution of arithmetic word problems. 
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have seen before and require known facts or skills to be combined in a slightly novel 

way, but are "straightforward" in not requiring, for example, the consideration of multiple 

sub-problems or novel insights. This is the type of problem we used on the non-routine 

test in our three studies of undergraduate students’ calculus problem solving. One of 

those problems was: Find values of a and b so that the line 2x+3y=a is tangent to the 

graph of 2)( bxxf   at the point where x=3. (Selden, Selden, Mason, & Hauk, 2000, p. 

133).  

Finally, at the opposite end of the continuum from routine problems, there are 

very non-routine problems which, while dependent on resources in one’s knowledge 

base, may involve considerable insight, the consideration of several sub-problems or 

constructions, and use of Schoenfeld's (1985) behavioral problem-solving characteristics 

(heuristics, control, beliefs). For such problems a large supply of tentative solution starts 

(Selden, Selden, Mason, & Hauk, 2000, p. 145), built up from experience, might not be 

adequate to bring to mind the resources needed for a solution, while for moderately novel 

problems it probably would. Often the Putnam Examinations include such very non-

routine problems.2  

                                                 
2The following problem was on the 59th Annual William Lowell Putnam Mathematical 
Competition given on December 5, 1998:  Given a point (a, b) with 0 < b < a, determine 
the minimum perimeter of a triangle with one vertex at (a, b), one on the x-axis, and one 
on the line y = x. You may assume that a triangle of minimum perimeter exists.    

This appears to be a calculus problem, but it only requires clever use of geometry. 
An elegant solution (posted by Iliya Bluskov to the sci.math newsgroup) involves 
extending the construction "outward" by reflecting across both the lines y = x and the x- 
axis and noticing that the perimeter of the triangle equals the distance along the path from 
(b, a) to (a, -b). Probably only very experienced geometry problem solvers could have 
previously constructed images of problem situations containing a tentative solution start 
that would easily bring this method to mind. 
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Most U.S. university mathematics teachers would probably like undergraduate 

students who pass their lower-level courses, such as calculus, to be able to work a wide 

selection of routine, or even moderately routine, problems. In addition, we believe that 

many such teachers would also expect their better students to be able to work moderately 

non-routine problems, and would think of the ability to do so as functionally equivalent 

to having a good conceptual grasp of the course. In other words, we conjecture that the 

ability to work moderately non-routine problems based on the material in a university 

mathematics course, such as calculus, is often considered part of the implicit curriculum 

and taken as equivalent to good conceptual grasp. However, no research has yet been 

done to substantiate this conjecture. 

 

Tentative Solution Starts 

An individual who has reflected on a number of problems is likely to have seen 

(perhaps tacitly) similarities between some of them. He or she might recognize (not 

necessarily explicitly or consciously) several overlapping problem situations, each arising 

from problems with similar features. For example, after much exposure, many lower-

level university students would probably recognize a problem as one involving, for 

example, factoring, several linear equations, or integration by parts.3 Such problem 

situations can act much like concepts (perhaps without signs or labels). While they may 

lack names, for a given individual they are likely to be associated with mental images, 

                                                 
3Although the kinds of features noticed by students in mathematical problem situations 
do not seem to have been well studied, the features focused on in physics problem 
situations have been observed to correspond to an individual’s degree of expertise. 
Novices tend to favor surface characteristics (e.g., pulleys), whereas experts tended to 
focus on underlying principles of physics (e.g., conservation of energy) (Chi, Feltovich, 
& Glaser, 1981). 
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that is, strategies, examples, non-examples, theorems, judgments of difficulty, and the 

like. Following Tall and Vinner's (1981) idea of concept image, we have called this kind 

of mental structure a problem situation image and have suggested that some such images 

may, and others may not, contain what we have called tentative solution starts (Selden, 

Selden, Hauk, & Mason, 2000, p. 145). These are tentative general ideas for beginning 

the process of finding a solution. The linking of problem situations with one or more 

tentative solution starts is a kind of (perhaps tacit) knowledge. For instance, the image of 

a problem situation asking for the solution to an equation might include "try getting a 

zero on one side and then factoring the other." It might also include "try writing the 

equation as f(x) = 0 and looking for where the graph of f(x) crosses the x-axis," or even 

"perhaps the maximum of f is negative so f(x) = 0 has no solution." We suggest that an 

individual’s problem-solving processes are likely to include the recognition of a problem 

as belonging to one or more problem situations, and hence, bring to mind one or more 

tentative solution starts contained in that individual's problem situation image. This, in 

turn, may mentally prime the recall of resources from that individual's knowledge base. 

Thus, a tentative solution start may link recognition of a problem situation with the recall 

of appropriate resources. We have suggested that problem situations, their images, and 

the associated tentative solution starts all vary from individual to individual and that the 

process of mentally linking recognition (of a problem situation) to recall (of requisite 

resources) through problem situation images might occur several times in solving a single 

problem, especially when an impasse occurs (Selden, Selden, Mason, & Hauk, 2000, pp. 

145-147).  
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The Genre of Proof 

We consider proofs, those that occur in advanced university mathematics 

textbooks and research journals, as being written in a special genre. It is clear that not 

every mathematical argument can be considered a proof, and much has been written in 

the mathematics education research literature about the distinction between 

argumentation and proof. (See, for example, Duval, as reported in Dreyfus, 1999, and 

Douek, 1999.) In this paper, we are considering proofs of the sort that advanced 

undergraduate students and beginning graduate mathematics students are expected to 

produce for their professors. We are aware that many upper-level U.S. mathematics 

majors just beginning their study of proof-based courses such as abstract algebra and real 

analysis often have great difficulty producing such proofs, despite the fact that many of 

them have previously taken a transition-to-proof course (Moore, 1994), usually in their 

second year of university. Students in such transition-to-proof courses often have trouble 

knowing what to write, especially when asked to prove simple set theory theorems, 

perhaps because the results are “too obvious” or are verifiable using examples or Venn 

diagrams. Thus, learning the genre of proof is important. Indeed, to help students learn 

the genre of proof, we have considered two aspects (or parts) of a final written proof: the 

formal-rhetorical part and the problem-centered part. The formal-rhetorical part of a 

proof (also sometimes referred to as a proof framework) is the part of a proof that 

depends only on unpacking and using the logical structure of the statement of the 

theorem, associated definitions, and earlier results. In general, this part does not depend 

on a deep understanding of, or intuition about, the concepts involved or on genuine 

problem solving in the sense of Schoenfeld (1985, p. 74). We call the remaining part of a 
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proof the problem-centered part. It is the part that does depend on genuine mathematical 

problem solving, intuition, and a deeper understanding of the concepts involved. (See 

Selden & Selden, 2009).  

A sample proof framework is given below for a proof of the following theorem: If 

f and g are real valued functions of a real variable continuous at a, then f + g is 

continuous at a.  

Proof. Let f and g be functions and suppose they are continuous at a. Suppose   

is a number > 0. Because f is continuous, there is a f >0 so that for all x, if  | x – a| < f, 

then | f(x) – f(a) | < ____. Also because g is continuous, there is a g >0 so that for all x, if 

| x – a | <g, then 

 | g(x) – g(a) | < ____ . Let  = ____. Note that   > 0. Let x be a number. 

Suppose that | x – a | <  . Then | f(x) + g(x) – ( f(a) + g(a) ) | = … <  . Thus, | f(x) + 

g(x) – ( f(a) + g(a) ) | <  . Therefore f + g is continuous at a.  

The problem-centered part of the proof consists of cleverly filling in the blanks 

using, for example 
2

 , minimum, and the triangle inequality. This is not to say that 

filling in the blanks is easy. Indeed it can be very difficult for an individual with little or 

no experience with such real analysis proofs.  

Being able to write a proof framework can be very helpful for students because it 

not only improves their proof writing, bringing it in line with accepted community norms, 

but also because it can reveal the nature of the problem(s) to be solved. Having once 

learned to write a number of proof frameworks, students can then concentrate their 

creative energies on solving the actual mathematical problems involved. In addition, for 

students, writing the formal-rhetorical part of a proof, and whatever else they can 
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regarding the actual problem(s) to be solved, can enable their university mathematics 

teachers to give more helpful and targeted criticism and advice. 

 

The Close Relationship Between Problem Solving and Proving 

A number of authors have remarked on the close relationship between problem 

solving and proving (e.g., Furinghetti & Morselli, 2009; Mamona-Downs & Downs, 

2009; Moore, 1994), and our division of proofs into their formal-rhetorical and problem-

centered parts (described above) can make this explicit for students. However, having 

good ideas for how to solve the problem-centered part of a proof is not equivalent to 

having a proof. Mamona-Downs and Downs (2009) have given university students 

informal arguments suggesting a way to solve tasks and asked them to convert those 

arguments into acceptable mathematical form. They concluded that “proof production 

[from an intuitively developed argument] can involve significant problem solving 

aspects. … A particularly frustrating circumstance for a student is when he/she can ‘see’ 

a reason why a mathematical proposition is true, but lacks the means to express it as an 

explicit [mathematical] argument. ” Thus, there are actually two distinct kinds of problem 

solving that can occur during proof construction, namely, solving the actual mathematical 

problem(s) that enable one to get from the given hypotheses to the given conclusion, and 

converting one’s (informal) solution into acceptable mathematical form. Neither of these 

problem-solving tasks is easy and students may require instruction and practice with 

each. How informal arguments are converted into acceptable mathematical form has been 

very little researched. 
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Figure 1.  A “picture” of g f with the epsilon and delta neighborhoods indicated. 

However, the theorem whose proof framework was illustrated above, namely, If f 

and g are real valued functions of a real variable continuous at a, then f + g is 

continuous at a, and whose proof involves using minimum and the triangle inequality 

cannot be easily obtained from informal intuitive argumentation about adding together 

the ordinates of the Cartesian graphs of f and g.    

 

The Importance of Problem Reformulation and Selection of Appropriate 

Representations 

A number of researchers (e.g., Boero, 2001;  Gholamazad, Liljedahl & Zazkis, 

2003; Zazkis & Liljedahl, 2004) have noted that reformulating a problem by making an 

appropriate choice of representation is often useful, sometimes even necessary, to make 

progress. Furinghetti and Morselli (2009) reported the unsuccessful problem-solving 

behavior of two fourth-year Italian university mathematics education students during 

attempts to prove that The sum of two numbers that are prime to one another is prime to 

each of the addends. One student, with the pseudonym Flower, after some initial panic 

and working with examples, succeeded in producing a potentially helpful representation 

(using the Prime Factorization Theorem), but could not exploit it. The other student, with 

the pseudonym Booh, first chose the representation of Least Common Multiple that 

“synthesizes [captures the essence of] the property, but doesn’t allow algebraic 

manipulation … being non-transparent” and realized that it was “without future.” So he 

considered another representation (also using the Prime Factorization Theorem), but also 

could not exploit it. In a separate earlier paper, Furinghetti & Moriselli (2007) reported 
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the unconventional, metaphorical thinking of another student who chose to think of, and 

draw, a frog jumping from stop to stop (i.e., from integer to integer on the number line) 

and successfully proved the same theorem. They noted that “The choice of the 

representation … may foster or hinder transformational and anticipatory thinking, which 

are two key issues in the proving process” (Furinghetti & Morselli, 2009, p. 74).   

Concepts can have several (easily manipulated) symbolic representations or none 

at all. For example, prime numbers have no such representation; they are sometimes 

defined as those positive integers having exactly two factors or being divisible only by 1 

and themselves. It has been argued that the lack of an (easily manipulated) symbolic 

representation makes understanding prime numbers especially difficult, in particular, for 

preservice teachers (Zazkis & Liljedahl, 2004).   

Symbolic representations can make certain features transparent and others 

opaque.4  For example, if one wants to prove a multiplicative property of complex 

numbers, it is often better to use the representation ire  , rather than x iy , and if one 

wants to prove certain results in linear algebra, it may be better to use linear 

transformations, T, rather than matrices. Students often lack the experience to know when 

a given representation is likely to be useful. More research is needed on the effect of 

one’s choice of representation(s) on successful problem-solving behavior.  

 

How Mathematicians Solve Problems 

                                                 
4 For example, representing 784 as 282 makes the property of being a perfect square 
transparent and the property of being divisible by 98 opaque. For more details, see Zazkis 
and Liljedahl (2004, pp. 165-166). 
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It would be very informative to have research on how advanced university 

mathematics students or mathematicians actually construct proofs in real time, but such a 

study has not yet been conducted. However, there is research on how mathematicians 

solve mathematical problems of various kinds: Carlson and Bloom (2005) investigated 

how mathematicians manage their well-connected conceptual knowledge and make 

decisions during problem solving; DeFranco (1996) replicated Schoenfeld’s work on the 

use of resources, heuristics, control, and beliefs with mathematicians; and Stylianou 

(2002) investigated how mathematicians use diagrams in problem solving.   

However, the problems given to the mathematicians in these studies were not the 

sort encountered by advanced undergraduate or graduate mathematics students when 

constructing proofs for their courses or by professors when conducting research. For 

example, one problem whose solution Carlson and Bloom (2005, p. 55) discussed at 

length was: A square piece of paper ABDC is white on the front side and black on the 

back side and has an area of 3 square inches. Corner A is folded over to point A’ which 

lies on the diagonal AC such that the total visible area is ½ white and ½ black. How far 

is A’ from the fold line? One problem used by DeFranco (p. 212) was: In how many ways 

can you change one-half dollar? 

Still some of the results are interesting, so we briefly recall them here. Based on 

interviews with 12 mathematicians, Carlson and Bloom (2005) developed a “problem 

solving framework” that has four phases (orientation, planning, executing, and checking). 

As part of the planning phase, there was a conjecture-imagine-evaluate sub-cycle, in 

which the mathematicians typically imagined a hypothetical solution approach, followed 

by “playing out” and evaluating whether that approach was viable. If it was not viable, 
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the conjecture-imagine-evaluate sub-cycle was repeated until a viable solution path was 

identified. Carlson and Bloom (2005, p. 45) stated, “The effectiveness of the 

mathematicians in making intelligent decisions that led down productive paths appeared 

to stem from their ability to draw on a large reservoir of well-connected knowledge, 

heuristics, and facts, as well as their ability to manage their emotional responses.”  

DeFranco (1996) studied the problem-solving behaviors of eight research 

mathematicians who had achieved national or international recognition in the 

mathematics community (e.g., had altogether 12 honorary degrees and had been awarded 

prizes such as the National Medal of Science) and eight who had not achieved such 

recognition, but had published from three to 52 articles. He concluded that the former 

were problem-solving experts, as well as content experts, and had superior metacognitve 

skills, whereas the latter were content experts with only modest problem-solving skills. 

Stylianou (2002) was interested in the interplay between visualization and 

analytical thinking and asked mathematicians the following problem:  Given a right 

circular cylinder cut at an angle (shown in her accompanying diagram), describe the 

resulting truncated cylinder’s net, that is, the “unrolled” truncated cylinder. She 

observed that the “mathematicians consistently attempted to infer additional 

consequences from their visual action. Each time a mathematician either constructed a 

new diagram or modified a previously constructed one, he took a few seconds to ‘extract’ 

any additional information . . . and to understand any possible implications.”  

In addition, there have been studies (e.g., Burton, 1999) that have included the 

reflections of mathematicians upon their own ways of working; however, these are often 

too general to be useful for an in-depth understanding of problem solving or for obtaining 
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suggestions for teaching. For example, Burton (1999) found some of the mathematicians 

likened problem solving and research to working on jigsaw puzzles or to climbing 

mountains.  

 

The Role of Affect in Proving and Problem Solving 

While strong affect can play both a positive and a negative role during proving 

and problem solving, more research is needed on the role of various kinds of affect from 

beliefs and attitudes to emotions and feelings. Furinghetti and Morselli (2009, p. 82) 

considered how negative affective factors influenced the problem-solving behavior of 

their two unsuccessful students. They noted that Flower panicked immediately after 

reading the statement of the theorem writing, “Help! I’m not familiar with prime 

numbers!” Later, after constructing some examples, Flower wrote, “Help! I cannot do it, I 

do not see anything. Deepest darkness.”  Then when she came up with the prime 

factorizations, Flower apparently expected to “conclude the proving process in an almost 

automatic way … [without] the possibility of dead ends and failures,” illustrating that 

beliefs and expectations are also important factors influencing problem-solving 

outcomes.  

In their study of mathematicians’ problem solving, Carlson and Bloom (2005) 

concluded, “The effectiveness of the mathematicians … appeared to stem from their 

ability to draw on a large reservoir of well-connected knowledge, heuristics, and facts, as 

well as their ability to manage their emotional responses [italics ours].” In a study of 

non-routine problem solving, McLeod, Metzger, and Craviotto (1989) found that both 

experts (research mathematicians) and novices (undergraduates enrolled in college-level 
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mathematics courses), when given different experience appropriate problems, reported 

having similar intense emotional reactions such as frustration, aggravation, and 

disappointment, but the experts were better able to control them. 

DeBellis and Goldin (1997, 2006) have considered affect (i.e., values, beliefs, 

attitudes, and emotions) as an internal representational system that is not merely auxiliary 

to cognition, but as “a highly structured system that encodes information, interacting 

fundamentally – and reciprocally – with cognition.” They have introduced the construct 

of meta-affect, by which they mean not only affect about affect, but also cognition that 

acts to monitor and direct one’s emotional feelings. They also suggested that one might 

characterize individuals’ affective competencies, such as the ability to act on curiosity or 

to see frustrations as a signal to modify strategy, but did not suggest how to do so.  

In addition, we see nonemotional cognitive feelings of appropriateness and of 

rightness or wrongness as giving direction to one’s problem-solving efforts. As Mangan 

(2001, Section 6, Paragraph 3) said, “In trying to solve, say, a demanding math problem, 

[a feeling of] rightness/wrongness gives us a sense of more or less promising directions 

long before we have the actual solution in hand.”  Below we give the example of Mary, a 

returning graduate student, who did not get a feeling of appropriateness with regard to 

using fixed, but arbitrary elements in her real analysis proofs for at least half a semester.  

Also there have been working groups on affect and mathematical thinking at 

several recent CERME conferences,5 but the discussions there seem to have been mainly 

concerned with methodological issues and such topics as changing teachers’ and 

students’ motivation and attitudes towards mathematics. Still we feel that the interplay 

                                                 
5 CERME is the Congress of the European Society for Research in Mathematics 
Education, many of whose Proceedings are available online. 
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between cognition and affect during problem solving and proving needs further 

investigation. 

 

How University Mathematics Students Prove Theorems 

Much of the research on university students’ proving has been concerned with 

difficulties they encounter or competencies needed. These include the use of logic, 

especially quantifiers (Dubinsky & Yiparaki, 2000; Epp, 2009; Selden & Selden, 1995); 

the necessity to employ formal definitions (Edwards & Ward, 2004); the need for a 

repertoire of examples, counterexample, and nonexamples (Dahlberg & Housman, 1997); 

the requirement for a deep understanding of the concepts and theorems involved (Weber, 

2001); the need for strategic knowledge of which theorems are important (Weber, 2001), 

the selection of appropriate representations (Kaput, 1991); and the importance of being to 

be able to validate (i.e., read and check) one’s own and others’ proofs for correctness 

(Selden & Selden, 2003).   

 

Teaching Proving to University Mathematics Students 

For several years, we have been developing methods for teaching proof 

construction to advanced undergraduate and beginning graduate mathematics students. 

We have developed an inquiry-based Modified Moore Method course (Mahavier, 1999; 

Coppin, Mahavier, May, & Parker, 2009) for advanced undergraduate and beginning 

graduate mathematics students who need help with proving (hereafter referred to as the 

“proofs course” and described in Selden, McKee, & Selden, 2010) and a voluntary 



  TME, vol10, nos.1&2, p .319 
 

 
 

proving supplement for undergraduate real analysis (hereafter referred to as the 

“supplement” and described in McKee, Savic, Selden, & Selden, 2010).  

In the proofs course, the students are given self-contained notes consisting of 

statements of theorems, definitions, and requests for examples, but no proofs. The 

students construct their proofs at home and present them in class. The proofs are then 

critiqued, sometimes extensively, and additionally suggestions for improvements in the 

notation used and the style of writing are given. There are no formal lectures, and all 

comments and conversations are based solely on students’ work. The specific topics 

covered are of less importance than giving students opportunities to experience as many 

different kinds of proofs as possible so we select theorems from sets, functions, real 

analysis, semigroups, and topology.   

We have developed some theoretical underpinnings for the two courses. One such 

theoretical underpinning involves having students develop a proof framework first in 

order to reveal the mathematical problem(s) to be solved. (See the above description in 

“The Genre of Proof” section.) While students with little experience in proof writing, at 

first can find constructing a proof framework to be a problem of moderate difficulty, 

eventually through practice, writing a proof framework can become routine or very 

routine. 

In addition, our proofs course notes are constructed to give students opportunities 

to prove theorems that are successively more non-routine. But non-routineness is not 

unidimensional; it is not simply a matter of whether the students have seen the concepts 

before or have the necessary factual knowledge but cannot bring it to mind (as was the 

case for the students in our calculus studies). In our proofs course notes we have “built 
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in” non-routine theorems, which we refer to as theorems of  Types 1, 2, and 3. Type 1 

theorems have proofs that can depend on a previous result in the notes. These theorems 

are included to encourage students to look for helpful previous results, as we have found 

that students often attempt to prove theorems directly from the definitions without 

recourse to previous results. Type 2 theorems require formulating and proving a lemma 

not in the notes, but one that is relatively easy to notice, formulate, and prove, whereas 

Type 3 theorems require formulating and proving a lemma not in the notes, but one that is 

hard to notice, formulate, and prove. An example of a Type 3 theorem is: A communtative 

semigroup S with no proper ideals is a group, given after a brief introduction to the ideas 

of semigroup and ideals thereof. What is needed for a proof of this theorem is the 

observation that aS is an ideal and hence aS=S. (This is the first lemma needed.)  This is 

followed by the nontrivial observation that aS=S implies that equations of the form ax=b 

are solvable for any b in S. Using some clever instantiations of this equation, one can 

obtain an identity and inverses, and hence, conclude S is a group. To date only two 

students have been able to produce a proof without help or hints, and several mathematics 

faculty (whose speciality is not semigroups) have found that proving this theorem takes 

time and a certain amount of reformulation. This convinces us that this theorem can be 

considered at least moderately non-routine. More research is needed on what makes a 

problem non-routine (for an individual or a class), that is, what are the various 

dimensions or characteristics contributing to non-routineness. 

The Co-construction of Proofs in the Supplement 

We have implemented this method three times to date in small (at most 10 

students) supplementary voluntary proving classes for real analysis. The supplement is 
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intended for students who feel unsure of how to proceed in constructing real analysis 

proofs. At the beginning of a supplement class period, the statement of a theorem entirely 

new to them, but similar to a theorem assigned for homework, but not a template 

theorem, is written on the board. The students themselves, or one of us if need be, offer 

suggestions about what to do, beginning with the construction of a proof framework. For 

each suggested action, such as writing up the hypotheses or an appropriate definition, 

drawing a sketch, or introducing cases, one student is asked to carry out the action at the 

blackboard. The intention is that all students reflect on the actions and later perform 

similar actions autonomously on their assigned homework (McKee, Savic, Selden, & 

Selden, 2010). 

For example, if the students are to prove a sequence 1{ }n na 
  converges to A , they 

would typically begin by writing the hypotheses, leave a space, and write the conclusion. 

After unpacking the conclusion, they would write “Let 0  ” immediately after the 

hypotheses, leave a space for the determination of N , write “Let n N ”, leave another 

space, and finally write “Then | |na A   ” prior to the conclusion at the bottom of their 

nascent proof. This would conclude the construction of a proof framework and bring 

them to the problem-centered part of the proof (Selden & Selden, 2009), where some 

“exploration” or “brainstorming” on the side board would ensue. The entire co-

construction process, and accompanying discussions, is a slow one – so slow that only 

one theorem can be proved and discussed in detail in a 75-minute class period. More 

research is needed on how to foster such mathematical “exploration” and 

“brainstorming.” 
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Theoretical Underpinnings: Actions and Behavioral Schemas  

Actions in the Proving Process 

We see proving as an activity, that is, as a sequence of actions, that are either 

physical (such as writing or drawing) or mental (such as attempting to recall a definition 

or theorem). Each action is paired with, and is a response to, a situation in a partly 

completed proof. By a situation we mean a reasoner’s inner, or interpreted, situation as 

opposed to an outer situation that may be visible to an observer. Although we are 

referring to a person’s inner situation, we have found in teaching that we can often gauge 

approximately what the inner situation is from the outer, observable, situation and the 

ensuing action. For example, below we will interpret Sofia’s staring blankly at the 

blackboard during tutoring sessions as the situation of not knowing what to do next.  

If a person engages in proving several theorems, then he or she is likely to 

experience a number of similar situations yielding similar actions. The first such 

situation-action pair is likely to have a conscious warrant based on, say, heuristics, logic, 

strategy, or known mathematics. However with time and (sometimes considerable) 

repetition, the need for a conscious warrant may disappear. The situation may then 

become linked, in an automated way, to a tendency to carry out the corresponding action; 

and the individual will not be conscious of anything happening between the situation and 

the action. We see such automated situation-action pairs as persistent mental structures 

and have called the smallest of them behavioral schemas (Selden, McKee, & Selden, 

2010; Selden & Selden, 2011).  By a small situation-action pair, we mean one that is not 

equivalent to any sequence of smaller such pairs. While the word “schema” has been 

used in several ways in the literature, we only mean such a persistent mental structure. 
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Behavioral schemas 

The formation of behavioral schemas, whether beneficial or detrimental, requires 

the development of a way of recognizing particular kinds of situations, and in response, 

enacting particular kinds of actions. It is possible that neither the kind of situation nor the 

kind of action for a potential behavioral schema exists as a concept in the surrounding 

culture. In that case, constructing a behavioral schema entails noticing, either explicitly or 

implicitly, similarities among situations and among the corresponding actions, and 

eventually reifying these into what amounts to conceptions (usually without any need for 

formal designations).  

Properties of Behavioral Schemas 

(1) Within very broad contextual considerations, behavioral schemas are 

immediately available. They do not normally have to be recalled, that is, searched 

for and brought to mind.  

(2) Behavioral schemas operate outside of consciousness. A person is not aware 

of doing anything immediately prior to the resulting action – he/she just does it. 

Furthermore, the enactment of a behavioral schema that leads to an error is not 

under conscious control, and one should not expect that merely understanding the 

origin of the error would prevent its future occurrences.  

(3) Behavioral schemas tend to produce immediate action, which may lead to 

subsequent action. One becomes conscious of the action resulting from a 

behavioral schema as it occurs or immediately after it occurs.  

(4) A behavioral schema that would produce a particular action cannot pass that 

information, outside of consciousness, to be acted on by another behavioral 
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schema. The first action must actually take place and become conscious in order 

to become information acted on by the second behavioral schema. That is, one 

cannot “chain together” behavioral schemas in a way that functions entirely 

outside of consciousness and produces consciousness of only the final action. For 

example, if the solution to a linear equation would normally require several steps, 

one cannot give the final answer without being conscious of some of the 

intermediate steps.  

(5) An action due to a behavioral schema depends on conscious input, at least in 

large part. In general, a stimulus need not become conscious to influence a 

person’s actions, but such influence is normally not precise enough for doing 

mathematics. Also, non-conscious stimuli that lead to action usually originate 

outside of the mind, not within it (as often happens in proof construction).  

(6) Behavioral schemas are acquired (learned) through (possibly tacit) practice. 

That is, to acquire a beneficial schema a person should actually carry out the 

appropriate action correctly a number of times – not just understand its 

appropriateness. Changing detrimental behavioral schemas, many of which have 

been tacitly acquired, requires similar, perhaps longer, practice (Selden, McKee, 

& Selden, 2010; Selden & Selden, 2011).  

Implicitly acquired detrimental behavioral schemas can be enacted automatically 

in problem-solving situations. For example, some experienced teachers may have noticed 

that giving a counterexample to a student who consistently makes an errorful calculation, 

such as (3 ) / 3 ( ) /a b c a b c    or 2 2a b a b   , is often not very effective. This can 

be so even when the student seems to understand the counterexample. Our view of 
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behavioral schemas suggests an explanation. If an incorrect algebraic simplification is 

caused by the enactment of a behavioral schema, then the resulting action (the incorrect 

simplification) would follow directly from the situation, that is, would not be under 

conscious control. To change the student’s behavior, one might try to change the 

detrimental behavioral schema not only by providing a counterexample, but also by 

suggesting a number of relevant problems and some monitoring.   

 

Using our Theoretical Underpinnings to Teach Proving 

Having students write a proof framework first, enables them to “get started” on 

writing a proof and reveals the mathematical problem(s) to be solved. What happens next 

depends on a student’s ability to solve various mathematical problems. Informally, one of 

our graduate students has reported that writing a proof framework helped her organize 

her thoughts on her high stakes mathematics PhD comprehensive examinations. Also, 

looking for students’ detrimental behavioral schemas and trying to help them replace 

them with beneficial schemas has enabled us to help students with proof construction. 

Sometimes acquiring a beneficial schema can take a long time.   

Mary’s Reaction to Considering Fixed, but Arbitrary Elements 

There are theorems, particularly in real analysis, that involve several quantifiers. 

For example, proving a function f is continuous at a involves proving that for all  0   

there is a 0   so that for all x, if |x-a|<   then |f(x)-f(a)|< . For such proofs, one 

needs to consider a fixed, but arbitrary . Students are often reluctant to do this. We 

conjecture this is because they do not feel it right or appropriate to do so.  
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Mary, an advanced mathematics graduate student, was interviewed about events 

that took place two years earlier when she was taking both a pilot version of our proofs 

course and Dr. K’s graduate real analysis course. In the homework for Dr. K’s course, 

Mary needed to prove many statements that included phrases like ‘For all real numbers 

0  ,’ where   represented a variable (the situation). In her proofs, Mary needed to 

write something like ‘Let 0  ,’ where  represented an arbitrary, but fixed number (the 

action).  

When Mary was interviewed about this situation-action pair she said the 

following:   

Mary: At that point [early in Dr. K’s real analysis course] my biggest idea 

was, well he said to “do it”, so I’m going to do it because I want to get 

full credit. And so I didn’t have a sense of why it worked. 

Interviewer: Did you have any feeling … if it was positive or negative, or extra …  

Mary: Well, I guess I had a feeling of discomfort … 

Interviewer: Did this particular feature [having to fix ] keep coming up in proofs? 

Mary: … it comes up a lot and what happened, and I don’t remember 

[exactly] when, is that instead of being rote and kind of 

uncomfortable, it started to just make sense … By the end of the 

semester this was very comfortable for me. 

Mary told us that, after completing each such proof, she attempted to convince 

herself that considering a fixed, but arbitrary element resulted in a correct proof. 

However, only after repeatedly executing this situation-action pair, and convincing 
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herself that her individual proofs were correct, did she develop a feeling of 

appropriateness.  

Willy’s Focusing Too Soon on the Hypotheses 

We have observed that after writing little more than the hypotheses, some 

students turn immediately to focusing on using the hypotheses, rather than unpacking the 

conclusion to see what is to be proved, after which they often cannot complete a proof. 

For example, late in our proofs course, Willy was asked to prove the theorem: Let X  and 

Y  be topological spaces and :f X Y  be a homeomorphism of X onto Y . If X  is a 

Hausdorff space, then so is Y . Because only ten minutes of class time remained and 

Willy had indicated that he had not yet proved the theorem, we asked him to “do the set-

up”, that is, construct a  proof framework (Selden, McKee, & Selden, 2010; Selden & 

Selden, 2011).  

On the left side of the blackboard, Willy wrote:  

Proof.   Let X  and Y  be topological spaces.  

Let :f X Y  be a homeomorphism of X onto Y .  

Suppose X  is a Hausdorff space.   

. . . 

Then Y  is a Hausdorff space.  

Then, on the right side of the board which was for scratch work, he listed one 

after the other: “homeomorphism, one-to-one, onto, continuous (f is open mapping)”. He 

then looked perplexedly back at the left side of the board. Even after two hints to look at 

the final line of his proof, Willy said, “And, I was just trying to just think, 
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homeomorphism means one-to-one, onto, …” After some discussion about the meaning 

of homeomorphism, the first author said, “There is no harm in analysing what stuff you 

might want to use, but there is more to do before you can use any of that stuff”, meaning 

that the conclusion should be examined and unpacked first.  

We inferred that Willy was enacting a behavioral schema in which the situation 

was having written little more than the hypotheses, and the action was focusing on the 

meaning and potential uses of those hypotheses before examining the conclusion. We 

conjectured that Willy and other students, who are reluctant to look at, and unpack, the 

conclusion feel uncomfortable about this, or perhaps feel it more appropriate to begin 

with the hypotheses and work forward.   

Sofia’s Reaction to Not Having an Idea  

Sofia was a diligent first-year graduate student; however, as our proofs course 

progressed, an unfortunate pattern in her proving attempts emerged. When she did not 

have an idea for how to proceed, she often produced what one might call an “unreflective 

guess” only loosely related to the context at hand, after which she could not make further 

progress. Although we could sometimes speculate on the origins of Sofia’s guesses, we 

could not see how they could reasonably have been helpful in making a proof, nor did she 

seem to reflect on, or evaluate, them herself. We inferred that Sofia was enacting a 

behavioral schema: she was recognizing a situation, that is, that she had written as much 

of a proof as she could, and had a feeling of not knowing what to do next. This situation 

was linked in an automated way to the action of just guessing any approach that usually 

was only loosely related to the problem at hand without much reflection on its usefulness.  
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Using our idea of behavioral schemas, we devised an intervention that was used in 

tutoring sessions with Sofia. We attempted to deflect implementation of her “unreflective 

guess” schema, by suggesting that she write the first and last lines of a proof, unpack the 

conclusion, and then do something else, such as draw a diagram, review her class notes, 

or reflect on everything done so far. These suggestions and guidance helped Sofia 

construct a beneficial behavioral schema. As the course ended, this intervention of 

directing Sofia to do something else was beginning to show promise. For example, on the 

in-class final examination Sofia proved that if f,  g, and h are functions from a set to 

itself,  f  is one-to-one, and f g f h  , then g h . Also on the take-home final, 

except for a small omission, she proved that the set of points on which two continuous 

functions between Hausdorff spaces agree is closed. This shows Sofia was able to 

complete the problem-centered parts of at least a few proofs by the end of the course, and 

suggests her “unreflective guess” behavioral schema was weakened  (Selden, McKee, & 

Selden, 2010; Selden & Selden, 2011).    

 

Future Research on Proof and Problem Solving 

The above discussion has not only synthesized some of the literature on proof and 

problem solving, it has highlighted several areas that could use more research. These are: 

how informal arguments are converted into acceptable mathematical form; how 

representation choice influences an individual’s problem-solving and proving behaviour 

and success; how students’ and mathematicians’ prove theorems in real time (especially 

when working alone); how various kinds of affect, including beliefs, attitudes, emotions, 

and feelings, are interwoven with cognition during problem solving; which characteristics 
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make a problem non-routine (for an individual or a class), that is, what are the various 

dimensions contributing to non-routineness; and how one might foster mathematical 

“exploration” and “brainstorming” as an aid to problem solving. 
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Abstract: Recent studies relating the affective domain with the teaching and 
learning of mathematics, and more specifically with mathematics problem solving, 
have focused on teacher education. The authors of these studies have been ever more 
insistently pointing to the need to design educational programs that take an integrated 
cognitive and affective approach to mathematics education. Given this context, we 
have designed and implemented a program of intervention on mathematics problem 
solving for prospective primary teachers. We here describe some results of that 
program. 
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Problem solving (PS) has always been regarded as a focal point of mathematics, and in 

the last 30 years its presence in curricula has increased notably (Castro, 2008; Santos, 

2007). It is regarded as the methodological backbone to approach mathematics content 

since it both requires and helps develop skills in analysis, comprehension, reasoning, and  
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application. At the same time, it is now being proposed as an item of curricular content in 

its own right as a core competence that students need to acquire. Castro (2008) and 

Santos (2008) recognize that attempts to teach students general PS strategies have been 

unsuccessful. Also, it seems important to emphasize the lack of attention in textbooks to 

learning heuristic problem solving strategies (Schoenfeld, 2007; Pino & Blanco, 2008). 

 

The results of the Programme for International students Assessment (PISA) of 

2003, 2006, and 2009 have highlighted the importance of mathematics problem solving 

(MPS) in compulsory education. One of the aspects tacitly accepted in the curricula at 

this educational level is the influence of affect on the teaching and learning of 

mathematics in general, and of MPS in particular. Already in the 1980s, Charles & Lester 

(1982) were observing that: "The problem solver must have sufficient motivation and lack 

of stress and/or anxiety to allow progress towards a solution" (p.10). In their work, they 

recognized that factors involving cognition, experience, and affect influence the MPS 

process. Among the affective factors that they explicitly noted were interest, motivation, 

pressure, anxiety, stress, perseverance, and resistance to premature closure. It is currently 

accepted that the cognitive processes involved in PS are susceptible to the influence of 

the affective domain in its three fundamental areas: beliefs, attitudes, and emotions 

(Sriraman, 2003). 
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Initial Primary Teacher Education, the Affective Domain (Beliefs, Attitudes, and 

Emotions), and Problem Solving 

Research on the affective domain has also expanded to the field of initial teacher 

education and the professional development of in-service teachers. It is considered that,  

in their actions in the classroom, teachers cannot dissociate affect from content when 

faced with a specific activity for pupils at a specific level. 

Influence of beliefs 

"When prospective primary teachers enter an Initial Education Centre 
they bring with them the educational baggage of many years in school. 
They thus naturally have conceptions and beliefs concerning Mathematics 
and the teaching/learning of Mathematics that derive from their own 
learning experience" (Blanco, 2004, p.40). Furthermore: "Few apparent 
changes in their beliefs were affected as a result of traditional 
mathematics method courses" (Chapman, 2000, p.188). 
 

It is important to distinguish the beliefs of prospective primary teachers (PPTs) 

about mathematics as an object – about its teaching and learning, beliefs which depend 

on affect – and their beliefs about themselves as learners – beliefs related to their self-

concept, self-confidence, expectations of control, etc. 

Beliefs about mathematics and problem solving 

According to Llinares and Sánchez (1996), prospective teachers acquire a technical 

school culture that conditions their approach to mathematics tasks and learning as future 

teachers. For them mathematics teaching is the transmission of specific information and 

mathematics learning is done through repetition. The teacher's role consists of presenting 

the content in a way that is clear and concise, and  the learner's role consists of listening 

and repeating. 
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According to Szydlik, Szydlik & Benson (2003), research has shown that 

prospective teachers tend to "see mathematics as an authoritarian discipline, and that 

they believe that doing mathematics means applying memorized formulas and procedures 

to do textbook exercises" (Szydlik, Szydlik & Benson, 2003, p.254). 

Prospective primary teachers have a very traditional idea of mathematics 

problems that are quite different from the suggestions of current curricular proposals 

(Blanco, 2004; Johnson, 2008). This leads to "a contradiction between their personal 

experience, which they judge as having been negative and monotonous, and their 

conception of mathematics as linked to reasoning and rigour" (Blanco, 2004, p.42). 

Furthermore, these beliefs constitute a kind of lens or filter through which they interpret 

their own personal learning processes and orient their teaching experiences and 

behaviours (Chapman, 2000), thus limiting their possibilities for action and 

understanding (Barrantes & Blanco, 2006). Moreover, "these beliefs are [internally] 

consistent" (Blanco, 2004, p.41). 

For Schoenfeld (1992), beliefs form a particular view of the world of 

mathematics, setting the perspective from which each person approaches that world, and 

they can determine how a problem will be tackled, the procedures that will be used or 

avoided, and the time and intensity of the effort that will be put into the task. 

Consequently, these beliefs need to be taken into account in teacher education, which, if 

necessary, will have to try to promote their change and the generation of new beliefs 

(Blanco, 2004). 

Prospective primary teachers regard MPS as a rote mechanical process, have few 

resources with which to represent and analyse problems, never look for alternative  
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strategies or methods for their solution, and make no use of the different guidelines and 

hints they might be given to help them towards a solution (Blanco, 2004; Córcoles & 

Valls, 2006; NCTM, 2003), thereby generating a vision of themselves as incompetent 

problem solvers (NCTM, 2003). 

The beliefs that most influence motivation and achievement in mathematics are 

students' perceptions about themselves in relation to mathematics (Kloosterman, 2002; 

Skaalvik & Skaalvil, 2011). Hernández, Palarea & Socas (2001) and Blanco et al. (2010)  

note that PPTs generally do not see themselves as capable or skilled as problem solvers, 

with most of them experiencing feelings of uncertainty, despair, and anxiety which block 

their approach to the task – in sum, most of them consider themselves to be incompetent 

at PS. A major difference between successful and unsuccessful problem solvers lies in 

their beliefs about MPS, about themselves as solvers, and about how to approach the task 

(NCTM, 2003). 

Influence of attitudes 

What students think about mathematics influences the feelings that surface 

towards the subject and their predisposition to act in consequence. That is, if students 

have negative beliefs about mathematics or its teaching, they will tend to show adverse 

feelings towards related tasks, in particular presenting avoidance behaviour or simple 

rejection of those tasks. This predisposition towards certain personal intentions and 

behaviours is what one calls attitudes. 

One can distinguish between mathematics attitudes themselves and attitudes 

towards mathematics as a subject. Mathematics attitudes have a marked cognitive 

component, and relate to general cognitive skills that are important in mathematics tasks.  
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Studies in Spain have shown that PPTs have few mathematics attitudes in this sense on 

aspects related to PS (Blanco, 2004; Corcoles & Valls, 2006). 

In attitudes towards mathematics, the affective component predominates. It is 

manifest in interest, satisfaction, and curiosity, or, on the contrary, in rejection, denial, 

frustration, and avoidance of mathematics tasks. Positive interest and attitudes towards 

mathematics seem to decline with age, especially during secondary education (Hidalgo, 

Maroto, Ortega & Palacios, 2008). 

 

 

Influence of emotions 

The emotions aroused in students by a mathematics task are affective responses 

characterized by high intensity and physiological arousal reflecting the charge of positive 

or negative meaning that a task has for them Studies of emotion have focused on the role 

of anxiety and frustration and their impact on achievement in mathematics, noting that 

one of the difficulties of mathematics education is seeing its teaching as essentially 

cognitive, and detached from the field of emotions (De Bellis & Goldin, 2006). 

 Emotions appear in response to an internal or external event which has a charge 

of positive or negative meaning for the person.  Thus, in facing a mathematical task a 

pupil may encounter difficulties which lead to the frustration of their personal 

expectations, causing the appearance of essentially negative valuations of the subject.  

Various authors agree that anxiety interacts negatively with cognitive and motivational 

processes, and therefore with the pupil's overall performance (De Bellis & Golding, 

2006; Zakaria & Nordim, 2008).  In this regard, Hidalgo, Maroto, Ortega & Palacios  
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(2008) found a strong negative correlation between pupils' levels of anxiety towards 

mathematics and their final marks at the end of the course.  This correlation is also 

present when comparing the levels of anxiety and positive attitudes towards mathematics.  

The relationship between anxiety and mathematics education has also been transferred to 

the case of prospective teachers, for which there is already a substantial literature (Peker, 

2009). 

Recent work has established relationships between anxiety and self-confidence.  

Thus, pupils with more anxiety towards mathematics have less confidence in their 

mathematical abilities and as learners of mathematics (Gil, Blanco & Guerrero, 2006; 

Isiksal, Curran, Koc & Askun 2009).  "Many of the negative emotional attitudes towards 

mathematics are associated with anxiety and fear. Anxiety to be able to complete a task,  

fear of failure, of making mistakes, etc., generate emotional blockages of affective origin 

that have a repercussion on the students' mathematics activity" (Socas, 1997, p.135). 

Zevenbergen, (2004) notes that PPTs show "low levels of mathematics knowledge as well 

as considerable anxiety towards the subject" (Zevenbergen, 2004, p.5). 

With respect to mathematics teaching and learning, there are various moments at 

which the relationship between emotions and cognitive processes becomes visible: when, 

following the proposal of a mathematics task, the structure of the activity is understood or 

relevant information is retrieved; when problem-solving strategies are being designed, 

including the recall of formulas or mechanical procedures; and when the PPTs are 

involved in the process of the control and regulation of their own learning coupled with a 

clear methodological approach to teaching the mathematics which they had come to 

reject. 
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It therefore seems appropriate to consider studying the beliefs, attitudes, and emotions of 

prospective teachers when they are dealing with PS. The lack of reflection on these issues 

is one reason for the persistence of PPTs' inappropriate conceptions and attitudes. In their 

passage through initial teacher education, they have not been led to re-conceptualize their 

role as primary teachers. Authors such as Mellado, Blanco & Ruiz (1998), Chapman 

(2000), Uusimaki & Nason (2004), and Malinsky, Ross, Pannells & McJunkin (2006) 

suggest that the origin of the negative beliefs of prospective teachers in their initial 

teacher education could be attributed to the influence of their own experiences as learners 

of mathematics, i.e., to their experiences when they themselves were being taught 

mathematics in school and to their teachers at that time, and to the mathematics courses 

in their teacher education programs. 

 

 

A Research Project with Prospective Primary Teachers on Cognition and Affect in 

Problem Solving 

The above references clearly show that the cognitive and the affective are closely related, 

that beliefs, attitudes, and emotions influence knowledge, and that knowledge in turn 

affects those same three aspects. 

The study of this relationship between affect and cognition has also been explored 

with teachers. Teachers' concepts and values determine the image of mathematics in the 

classroom, and condition the type of teacher-pupil relationship. Conceptions influence 

attitudes, and both of them influence the teacher's behaviour and the pupils' learning  

(Ernest, 2000). In order to foster change in our prospective teachers' views of teaching,  
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we shall have to incorporate conceptions and attitudes as part of a process of discussion 

and reflection in our initial teacher education programs (Mellado, Blanco & Ruiz, 1998; 

Stacey, Brownlee, Thorpe & Reeves, 2005; Johnson, 2008). There thus seems to be a 

clear interest in studying the affective and emotional factors involved in the mathematics 

education of PPTs since, as future teachers, their beliefs and emotions towards 

mathematics will influence both the level of achievement and the beliefs and attitudes 

towards the subject of their pupils. 

De Bellis & Goldin (2006) and Furinghetti & Morselli (2009) note that studies of 

students' performance and problem solving have traditionally concentrated primarily on 

cognition, less on affect, and still less on cognitive-affective interactions. However, a 

growing number of studies recognize the importance of integrating the affective and 

cognitive dimensions into the teaching and learning of mathematics (Amato, 2004; Zan, 

Bronw, Evans & Hannula, 2006; Furinghetti & Morselli, 2009; Blanco et al., 2010). 

Some authors, such as Furinghetti & Morselli (2009), specifically note the need to 

simultaneously develop cognitive and affective factors in teacher education programs. In 

this regard: "The role of teacher education is to develop beginning teachers into confident 

and competent consumers and users of mathematics in order that they are better able to 

teach mathematics" (Zevenbergen, 2004, p.4). 

In this context, we considered that there was a need to undertake a research 

project on MPS in initial primary teacher education with the consideration of its cognitive 

and affective aspects. Initial teacher education is conceived of as being just one part of a 

continuous and permanent process in a teacher's professional life in which emotional 

education is an indispensable complement to cognitive development. Indeed, cognitive  
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and affective aspects are essential elements in the development of teaching as a 

profession. 

We believe that gaining the capacity to solve mathematics problems should be an 

achievable goal in an educational environment in which students are allowed to generate 

their own PS strategies and compare them with other alternatives. In particular, we 

believe that the way in which PS is approached is highly personal. Each student will have 

to be helped to discover their own particular style – their own capabilities and limitations. 

We must avoid conveying to our students only heuristic rules or methods, but instead be 

sure to help them develop positive attitudes and emotions towards MPS based on their 

own past and present experiences. 

Objective of the research project 

In our research study, we set ourselves the following general objective: to design, 

develop, and evaluate an intervention program to enhance the performance of PPTs in 

MPS, and to lay the foundations for them to learn to teach MPS at the primary school  

 

level, integrating in a single model cognitive aspects of PS and emotional education 

(Annex 1). 

Additionally, we set different specific objectives relating to the study population, 

two of which were: 

 To describe the participating prospective teachers' conceptions about MPS. 

 To describe and analyse their attitudes, beliefs, and emotions related to 

MPS, and in particular their expectations of control. 
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In addition, two specific objectives relating to the teacher education program were 

pursued: 

 To evaluate the development of the program with respect to the PPTs' 

levels of anxiety. 

 To describe the aspects of the program which they found to be most 

significant. 

During the 2007-08 academic year, we conducted a pilot study that served to fine-

tune the program. We performed the actual field-work during 2008-09. 

Data collection and analysis 

The nature of the research problem and the data collection led us to use a combination of 

qualitative and quantitative methods to relate, compare, and contrast the different types of 

evidence. The implementation of the program followed an action research approach since 

the ultimate goal is to help the participants develop their thinking, modify their attitudes, 

and seek ways to overcome their difficulties in MPS. 

Annex I presents the plan of the 13 sessions comprising the program, specifying 

the objectives of each session, the instruments used to obtain information (open and 

closed questionnaires, diaries, and forums), the nature of the data, and the corresponding  

type of analysis. The participants in the program were a core group of 55 PPTs in the 

Education Faculty of the University of Extremadura (Spain) in the third year of their 

course. 

All the program sessions lasted two hours, and were audio and video recorded, 

accompanied by field notes. The Moodle Virtual Platform was used as support for the 

program's documents, information, and forums, as also is indicated in Annex I. 
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Apart from the open and closed questionnaires specifically indicated in Annex I, 

the following research tools were employed: 

 Observation of the behaviour in the classroom of both teacher and 

students, video recorded with two cameras, with subsequent transcription and analysis. 

 The Moodle platform (Universidad de Extremadura) is a useful tool for the 

presentation of information and communication. It allows information to be stored for 

later analysis (both qualitative and quantitative), with the date and time and the subject 

contributing the information being reliably logged. It allows one to evaluate the 

participation, and to see whether the students have attained specific learning objectives, 

providing feedback as well as motivation to the students. A reference to the use of this 

platform in the present research can be found in Caballero, Blanco & Guerrero (2010). 

 Diaries (Nichols, Tippins & Wieseman, 1997), kept on the Moodle virtual 

platform. These allow the collection of observations, sensations, reactions, 

interpretations, anecdotes, introspective remarks about feelings, attitudes, motives, 

conclusions, etc. 

 A forum, also via the Moodle virtual platform, on some of the specific 

content or situations arising in class. 

For the data analysis, we used the program packages SPSS 15.00 for the quantitative 

analysis of the questionnaires that we are given in Annex I.  For the qualitative analysis, 

we followed the recommendations of Goetz & LeCompte (1984) and Wittrock (1986), 

establishing a process similar to that described in Barrantes & Blanco (2006) based on 

units of analysis (Goetz & LeCompte, 1984) and the categories noted in the instruments. 
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Analysis of Results and Discussion 

The breadth of the research study and the characteristics of this present communication 

only allow us to present some partial results. In particular, we shall refer to some of the 

results on the PPTs' conceptions about PS, on certain aspects related to the affective 

domain, particularly those concerning the students' expectations of control, and on some 

general aspects of the program's evaluation. 

What do the prospective teachers understand by a mathematics problem? 

Our analysis of the questionnaires showed the prospective teachers to hold very 

traditional conceptions about mathematics problems. Thus, they referred to them as 

closed statements which explicitly or implicitly indicate the procedure to follow for their 

solution. The responses to the items of the questionnaire on "What do I understand by a 

mathematics problem?" (Annex II) reflect the classifications noted by some authors in the 

literature. In this sense, their formulation of a problem is in the form of a text which gives 

all the information to be resolved, which Borasi (1986, p.135) calls a "word problem"; 

and the method of solution explicitly or implicitly suggested in the text involves a 

translation of the words of the problem to a mathematical expression, which Charles & 

Lester (1982, p.6) call a "simple or complex translation problem"; and the solution of this  

expression involves using a known algorithm, which Butts (1980, p.24) refers to as an 

"application problem". 

The basic referents of their problems are arithmetic operations, algebraic 

algorithms, or, to a lesser extent, calculations of areas. It was interesting to note that the 

contexts they describe are those that have been traditional in mathematics textbook 

problems since the late nineteenth century. Thus, in both years of the study, there are  
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references to problems of taps, the number of heads and legs of farm animals, trains and 

distances, and the comparison of ages. It stood out that in no case was there any reference 

to specific situations of their or their potential pupils' immediate environment, or to such 

everyday resources as mobile phones or personal hobbies.  This result, which we did not 

find in the literature we reviewed, seems especially important because it is necessary to 

link problem solving with the pupils' interests and relate the problems to their immediate 

environment. 

Of a total of 178 problems, 126 (70.8%) were arithmetic with a structure 

involving addition or multiplication, representing elementary shopping or business 

situations2. Another 31 (17.4%) were questions of arithmetic proportionality3. There were 

7 problems (3.9%) involving equations in which the situations were related to ages, taps,  

speeds of trains or cars, and farm animals4. Geometry problems accounted for 5.7%, and 

were very basic, referring to the calculation of areas5. 

In analysing this PS situation in class with the students (4-XI-2008), we thought 

that it was convenient to focus on the following question: 

 Do you think there are other types of problems? If so, write down two 

examples. 

                                                 
2 There are 47 apples in an apple tree. Mary has picked 37 apples. How many apples are left in the tree? 
In a fruit shop, 1 kg of apples costs 1.75 euros. If Laura buys two kilos, how much money has she spent 
altogether? 
3 We know that Juan has eaten 2/3 of a cake, and his brother Sergio 5/6 of the rest. How much of the 
cake is left? 
Three friends have 40 euros to spend. The first spent 2/5 of the total, and the second 2/3 of what the first 
spent. How much did the third spend? 
4 On a farm there are horses and chickens. In total there are 74 feet and 12 beaks. How many horses and 
how many chickens are there on the farm? 
5 Calculate the area of a square whose side is 2 cm. 
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Observation of the recordings and the analysis of this last question brought out the 

difficulty they were having in establishing mathematics activities that were different from 

those they had proposed, and which had been analysed previously in that same program 

session. 

Thus, 14 participants answered directly that there are no different types of 

problem. Two examples of these responses are the following: 

 "I think not, because throughout my school life I always had problems of 

the same type." 

 "The truth is that I have no idea. The maths problems that I know are those 

of always." 

Another 34.5% again insisted on the same kinds of problem noted above, but 

involving situations concerned with other mathematics content such as statistics or 

probability that had not specifically appeared previously. 

The question prompted some students to guess that there really must exist other 

types of mathematics problems, but they found themselves unable to give any examples: 

 

 "After what we have seen today, there must be other types, but right now I 

can't think of any." 

 "Clearly there must be, but I am unable to find any examples." 

This conception of MPS contrasts with what is imagined in today's curricula 

which consider a much broader view of problems, different perspectives (in terms of 

content, application, and methods), and in the usual classifications such as those we  
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presented in the program which show a variety of different possibilities. Consequently, 

initial teacher education programs should intensify the attention given to these issues. 

The PPTs' expectations as problem solvers themselves 

For the 5th session, we adapted the Battery of Scales of Generalized Expectations of 

Control, BEEGC-20 (Palenzuela et al., 1997), to the context of PS. This adaptation 

consisted of a closed questionnaire, with responses on a scale of 1 to 10, targeted at 

determining the students' expectations of control when faced with MPS. We wanted to 

examine whether they believed their success or failure in PS would be a true reflection of 

their actions, or rather be simply at the mercy of luck or chance. We also wanted to 

determine their expectations of self-efficacy, i.e., to what extent they felt themselves 

capable of solving mathematics problems. This was the second specific objective that we 

indicated above in Sec. 3, and whose partial results we shall consider in the following 

paragraphs. 

The results showed the participating students had a high expectation of 

contingency on their actions (perseverance, effort, commitment, ability), and a low 

external locus-of-control reflecting luck or chance. 

Thus, their responses to Item 1 ("My success in solving mathematics problems 

will have much to do with the effort I put into it"), with a mean score of 6.69, showed that  

they see effort as being crucial for success in MPS. The result was similar for Item 15 ("If 

I try hard and work, I will be able to solve successfully the mathematics problems that I 

am set") which was directly related to the dependence of success in problem solving on 

effort and application. Additionally, 54.9% indicated on Item 11 ("In general, success or  
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failure in solving a mathematics problem will depend on my actions") that success would 

depend on their own actions. 

Rinaudo, Chiecher & Donolo (2003) and Martínez (2009) also refer to high levels 

of control, and the subjects studied by Orozco-Moret & Diaz (2009) and Yara (2009) 

attributed success in MPS to ability and effort. However, many prospective teachers 

become blocked when faced with these mathematics tasks, and in many cases end up by 

abandoning the effort, as was shown in the observations of their behaviours in the fourth 

and eighth sessions. This reflected a certain contradiction between what they expressly 

stated and their actions in class in dealing with these mathematics tasks. These 

observations also revealed their lack of knowledge of procedures and heuristics with 

which to tackle mathematics problems. 

With respect to their expectations of self-efficacy, these prospective teachers 

showed little confidence in themselves and their abilities when solving quite normal 

problems of mathematics. Thus, 70.58% said they had "thoughts of insecurity when doing 

MPS" (Item 14) and 64.7% "had doubts about their ability to solve mathematics 

problems" (Item 2). In this regard, Caballero, Guerrero & Blanco (2008) and Hernández, 

Palarea & Socas (2001) also note that PPTs in initial teacher education do not see 

themselves as capable or skilled in mathematics. 

That the PPTs mainly attributed their success or failure in solving mathematics 

problems to their own actions and not to helplessness or luck means that they are largely  

attributing success to internal, unstable, and controllable factors. This is beneficial for 

their future learning situations. On the contrary, their low expectations of self-efficacy,  

 



 
  Blanco, Guerrero & Caballero 

 

 

i.e., their lack of confidence in their capacity to solve the mathematics problems they will 

be set, would seem to be prejudicial for the future learning. 

Their high expectations of contingency together with low expectations of self-

efficacy foster the development of negative attitudes towards solving mathematics 

problems, leading the PPTs to consider that failure in this activity is due to a lack of 

ability rather than to any lack of effort. As suggested by Martínez (2009), the result is to 

severely lower their expectations of success, and to encourage them to abandon any 

persistence in trying to learn how to solve mathematics problems. Similarly, their low 

expectations of self-efficacy and their not very high expectations of achievement are 

suggestive of an algorithmic approach to learning. 

Some results of the program of MPS and emotional education 

To evaluate the program, one of the instruments we used was the State/Trait Anxiety 

Index (STAI) self-assessment questionnaire adapted from Spielberger (1982). We 

presented this questionnaire on three occasions – at the beginning of the program, on its 

completion, and four months after its completion. In the present communication, we shall 

compare the results of four of its items: 

 When I am solving mathematics problems I feel calm. (calm) 

 When I am solving mathematics problems I feel secure. (security) 

 I feel comfortable when I am solving a mathematics problem. (comfort) 

 I feel nervous when I am faced with a mathematics problem. (nervousness) 

The results indicated a positive trend in the period covered by the program, with a 

decrease in anxiety about MPS continuing four months after the program. Even though  
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there was a slight regression relative to the actual moment of completion of the program, 

the data were better than those obtained at the beginning. This reflects a major advance 

with respect to the control of anxiety following participation in the intervention program. 

The participants also declared a change in attitude: "The program has changed 

our attitude to MPS, even though the content we have acquired throughout our lives is 

impossible to change in just 13 sessions" (10 FS 1). Other evidence shows their desire to 

integrate cognitive with affective aspects: "This program has also been useful in that, 

when we are teaching, we will know to take into account not only what our pupils know, 

but also their attitudes and emotions, which, by my own experience, I know have a great 

influence both positive and negative" (7 DP 4). 

The debate that took place in the evaluation session and in the forums showed 

important reflections and concerns which we interpreted as an attempt to approach PS in 

a systematic and orderly fashion, as a result of the procedures and heuristics worked on in 

the general model during the program. Thus, in the evaluation session (Session 13), one 

student notes that: "The execution of the steps [in a problem solving strategy] helps me to 

concentrate, to analyse the problem, and to understand it better" (18 MV 2). Another 

student says: "In my case, it helped me to be more orderly in presenting problems" (10 FS 

2), and expresses a desire to apply it in her future work as a teacher: "We dealt with 

aspects that we shall subsequently transmit to our own pupils, and with methods that we 

will use such as the steps to follow for problem solving and relaxation methods" (18 MV 

3). 
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Conclusions 

The present work has confirmed the importance of considering in an integrated form the 

cognitive and affective aspects of mathematics teaching and learning at different levels, 

especially in initial teacher education. This can help foster the change in our prospective 

teachers' beliefs and attitudes along the line laid out in current curricular proposals. 

As one of the students stated, it is difficult in just 13 class sessions for our PPTs to 

learn both MPS for themselves and how to teach it to their future primary pupils. But it is 

gratifying to note that a change in attitude was initiated, and that they themselves valued 

positively their first-person experience in the program, and that the content of the 

program fell within their expectations as future teachers. 
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Annex I. Intervention Program 

The program ran from October to December 2008 except for the evaluation session 
which took place in April 2009, four months after completion of the program. 

Session 1. (27 and 28 October) Presentation of the program to students. 55 PPTs. 

27-X. The students were provided with extensive information about the 
workshop, working methods, and objectives. 

27-X. Initial questionnaire - Commitment to the workshop.  
Objective: To determine the participants' self-perception as problem solvers, and 
their degree of commitment to the workshop. 
(Open questionnaire; qualitative analysis.) 

28-X. Conceptions and knowledge of MPS. What do I understand by a 
problem? Objective: To analyse students' conceptions and knowledge about 
mathematics problems. 
(Open questionnaire; qualitative analysis.) 

28-X. Affective domain in MPS. 
Objective: To examine the students' affective factors (beliefs, emotions, and 
attitudes) that influence their development in MPS. Adaptation to MPS of the 
questionnaires of Gil, Blanco & Guerrero (2006), and Caballero, Guerrero & 
Blanco (2008) on the affective domain in mathematics. 
(Closed questionnaire; quantitative analysis.) 

Session 2. (4 November) Conceptions and affective aspects of MPS. 53 PPTs. 

Presentation and discussion of the results of the previous questionnaires. We 
analyse the PPTs' conceptions of MPS, comparing them with the perspectives 
outlined in the curriculum (as specific content and as method) and with those 
described by different authors. Likewise, the results of the questionnaire on 
affect are discussed, expanding them with other previous results (Gil, Blanco & 
Guerrero, 2006; Caballero, Guerrero & Blanco, 2008). 

Session 3. (7 November) Problems vs exercises. 55 PPTs. 

Differentiation of exercises and problems, and presentation of other types of 
problems based on different classifications (Borassi, 1986; Butts, 1980; Charles 
& Lester, 1982; etc.). 

Forum on the Moodle platform concerning the content of Sessions 2 and 3. 

Session 4. (11 November) How do I approach MPS? Before, during, and after. 55 
PPTs. 

Pre-test. 
Objective: To evaluate the participants' own impressions that arise at different 
moments of MPS. Two problems proposed for solution which will allow us to 
observe their knowledge and affects at different stages of the PS process at this 
early stage of the program. They will be asked to respond to the same open 
questionnaire on three occasions – before seeing the problem, while they are 
solving it, and after having had to deal with the activity. 
(Open questionnaire; qualitative analysis.) 
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Adaptation of the STAI (state / anxiety) to MPS – pretest. 
Objective: To determine the level of anxiety that MPS provokes in the students. 
Adaptation of the STAI (Spielberger, 1982) to MPS. 
(Closed questionnaire; quantitative analysis.) 

Session 5. (14 November) Personal involvement. Causal attributions, and 
behaviour and stress. 54 PPTs. 

BEEGC-20 adapted to MPS. 
Objective: To examine the causal attributions relating to MPS (expectations of 
success and of the locus-of-control, of helplessness, and of self-efficacy). 
Adaptation of the BEEGC-20 Questionnaire of Palenzuela et al. (1997) to MPS. 
(Closed questionnaire; quantitative analysis.) 

Initiation of a discussion in class on the content of the questionnaire, which 
will be followed by a specific forum on the Moodle virtual platform. 

Session 6. (18 November) Emotional coping: relaxation, breathing, and self-
instruction. 55 PPTs. 

Presentation of results of the previous questionnaire, and analysis of the 
interventions in the forum. 

Information and explanation of different aspects of emotional education and 
its relationship with PS. Mainly the topics covered in the questionnaire. 

Session 7. (21 November) Overview of the Integrated Model6 of MPS I. 55 PPTs 

Sessions 8–10. (25 November, 2 December, 5 December) Application of the 
Integrated Model, with specific problems. 

Session 11. (9 December) Specific activities of the Integrated Model for primary 
pupils. 55 PPTs. 

In this session, we present specific activities adapted to the primary level that 
allow the PPTs to work with pupils aged 6 to 12 at different stages of the general 
model – basically, the comprehension and analysis of problems, and the design 
of strategies. 

Session 12. (12 December) General model of MPS. 55 PPTs. 

The PPTs work specifically on problems in a complete and continuous 
application of the Integrated Model. 

STAI adapted to MPS (state / anxiety). Post-test I. 
Objective: To determine the level of anxiety that MPS provokes in the students  

                                                 
6 Blanco et al. (2010) proposed a theoretical model based on general models of PS (Bransford & 

Stein, 1987; Polya, 1957; Santos, 2007), on the cognitive-behavioural models of Zurilla & Goldfried 
(1971) and on the systemic model of De Shazer and the Milwaukee group (De Shazer, 1985). It 
consists of a process of experimentation and reflection based on the general model, and structured into 
five steps: (i) accommodation / analysis / understanding / familiarization with the situation; (ii) search 
for and design of one or more PS strategies; (iii) execution of the strategy or strategies; (iv) analysis of 
the process and the solution; and (v) How do I feel? What have I learnt? 
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after the workshop. (One problem.) Adaptation of the STAI of Spielberger 
(1982) to MPS.  
(Closed questionnaire; quantitative analysis.) 

Session 13. (16 December) Evaluation of the PPTs and the workshop. 55 PPTs. 

Evaluation: Proposal of a problem for the PPTs to solve by following the 
Integrated Model, in order to evaluate the knowledge they have acquired about 
the General Model. 

Workshop evaluation. How have I managed my resources? 
Objective: To determine the strengths and weaknesses of the workshop, and the 
progress the participants have made in MPS. 
(Open questionnaire; qualitative analysis.) 

Classroom discussion about how the workshop has functioned in relation to 
its proposed objectives, and about the participants' individual goals and 
commitments. Audio and video recordings and field notes, and opening a forum 
on the Moodle virtual platform. 

Session to evaluate the research. (April 2009) 34 PPTs. 

STAI (state / anxiety). Post-test II. 
Objective: To determine the level of anxiety that MPS provokes in the students 
four months after completion of the program. 

 

Annex II 

"What do I understand by a mathematics problem?" 

a. Full name __________________________________________ 

1. Formulate the statement of three mathematics problems. 
2. Indicate why mathematics problem solving is important in compulsory 

education. 
3. Write down some personal reflections about your own experience in 

mathematics problem solving in primary and secondary school. 
4. What consideration does mathematics problem solving merit on your part? 
5. Add something that you find significant, and have not written. 
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Introduction 

For Leonardo da Vinci “saper vedere”, that is, knowing how to see, or having the 

art to see, was the key to unlocking the secrets of the visible world. Saper vedere 

included a precise sensory intuitive faculty as well as artistic imagination (Heydenreich, 

1954) which were at the root of Leonardo’s inventiveness and creativity. According to 

Leonardo, to understand, you only have to see things properly (Bramly 1994, p. 264). 

Knowing how to see is also important in mathematics. The Italian mathematician Bruno 

de Finetti (1967) stresses this importance in his book on “Saper vedere” in mathematics. 

He highlights several aspects of knowing how to see in mathematics, such as knowing 

how to see the easy, how to see the concrete things, and how to see the economical 

aspects. He also discusses in what ways knowing how to see also helps us to better 

recognize the meaning of general and systematic methods of mathematics represented in 

formulas. His book starts by highlighting the importance of reflection for learning the art 

of seeing.  

Reflection also plays a central role in Polya’s Looking back stage in problem 

solving. Polya’s heuristics also provide a language to help problem solvers think back 

about their problem solving experiences. As Lesh and Zawojewski (2007) point out, “by 

describing their own processes, students can use their reflections to develop flexible 

prototypes of experiences that can be drawn on in future problem solving” (p. 770). 
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Reading Polya’s heuristics and looking at the examples he gives, we can concur with 

Lesh and Zawojewski that Polya’s heuristics are intended to help students go beyond 

current ways of thinking about a problem, rather than being intended only as strategies to 

help students function better within their current was of thinking.  

Lesh and Zawojewski (2007, p. 769) point out that when solving problems in 

complex problematic situations the abilities related to “seeing” are as important as 

abilities related to “doing”. Schoenfeld (1985) found that individuals select solution 

methods to problems based on what they “see” in problem statements. Schoenfeld’s data 

indicate that mathematical experts decide what problems are related to each other based 

upon the deep structure of the problems, whereas novices tend to classify problems by 

their surface structure (p. 243). Krutetskii (1976) found in his research that one trait of 

mathematically able students was to strive for a clear, simple, short, and thus “elegant” 

solution to a problem (p. 283). He also mentions that “a striving for simplicity and 

elegance of methods characterizes the mathematical thought of all prominent 

mathematicians” (p. 283-284). Krutetskii also describes how all the capable students, 

after finding the solution to a problem, continued to search for a better variant, even 

though they were not required to do so (p. 285). In contrast, average students paid no 

particular attention in his experiments to the quality of their solutions if there were no 

special instructions from the experimenter in that respect. Krutetskii observed that 

capable students “were usually not satisfied with the first solution they found. They did 

not stop working on a problem, but ascertained whether it was possible to improve the 

solution or to do the problem more simply” (p. 285-286).  
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In this article we will focus on learning the art of seeing the easy, by using an 

example of a  problem posed to future secondary mathematics teachers. De Finetti 

indicates that it is often difficult to see the easy things, that is, to be able to distinguish, in 

the complexity of circumstances present in a problem, those that are enough to formulate 

the problem or that allow one to do the formulation as several successive steps that can be 

carried out easily. 

The problem presented below was posed as part of a modeling course. Lesh and 

Doerr (2003) point out that from a modeling perspective, traditional problem solving is 

viewed as a special case of model-eliciting activities. Lesh and Doerr emphasize that “for 

model-eliciting activities that involve a series of modeling cycles, the heuristics and 

strategies that are most useful tend to be aimed at helping students find productive ways 

to adapt, modify, and refine ideas that they do have.” (p. 22). According to Lesh and 

Doerr, we need to put “students in situations where they are able to reveal, test, and 

revise/refine/reject alternative ways of thinking” (p. 26). 

We will first present the strategy used by a group of future teachers, and then an 

approach gained by looking back at the problem and trying to see it at a glance. We finish 

with a brief discussion of why it would be worthwhile for prospective teachers to look 

back at the this and other problems..   

 

The problem 

During a course for prospective high school teachers, one of the assignments was 

to present a problem to their fellow students that could be modeled or solved with high 

school mathematics. The second author posed the following problem to her classmates. 
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You are attempting to bathe a cat in your kitchen. Unfortunately, the cat is not as 

open to the bath as you were hoping, and as a result you spill 3 gallons of water in 

your kitchen. Which brand of paper towel should you use to clean up the spill?  

Brand A 

Paper towel is 1/32 inches thick 

Total diameter of roll is 5 inches  

Diameter of hollow inside is 2 inches 

One sheet absorbs 1.5 fluid ounce 

Each sheet is 10 inches long  

Brand B 

Paper towel is 1/64 inches thick 

Total diameter of roll is 6 inches  

Diameter of hollow inside is 2 inches 

One sheet absorbs 1 fluid ounce 

Each sheet is 10 inches long  

 

The assumption is that the price for the roll is the same for both brands.  Notice 

that it is not necessary to know the width of the sheets, because we know how much each 

sheet absorbs for each brand.  Remember that  1 gallon = 128 fluid ounces. 

                                       

Figure 1a. Cross section of Brand A roll               Figure 1b. Cross section of Brand B roll 

 

 

The future teachers used an approximation by modeling the spiral cross section of 

the role of paper as a series of concentric circles. Each successive layer was a little longer 

because the thickness of each sheet increased the diameter. The approach used by all the 

future secondary teachers to solve the problem was to find how many rolls of each brand 
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were needed to clean up the spill. To find this number they decided to compute how 

much water can be absorbed by one roll of each brand, finding first how many sheets are 

in each roll. 

 

Figure 2. Concentric layers 

Thus for Brand A the first layer has a length of  inches.    

For the second and third layers the length in inches is  

 

 

and in general, the length in inches of the k-th layer is 

. 

The number of layers, n,  is given by dividing the thickness of the roll, 1.5 inches, 

by the thickness of each sheet, 1/32 inches, so . 
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The total length is thus ⋯  2 2 	 1 ⋯

2 		 1  

2 48
1
32

1 2 ⋯ 47  

 

 inches. 

Thus the total length of a roll of brand A is 523 inches. The length of each sheet is 

10 inches, so there are about 52 sheets per roll. These sheets together can absorb 

ounces of water. Thus each roll absorbs 78 fl. oz. of water. To clean 3 

gallons =  fl. oz. = 384 fl. oz. we need  rolls. That is, we need 

almost 5 rolls of Brand A to clean the spilled water.  

For Brand B the length of each layer is  inches and the 

number of layers is . The total length is ⋯   

2 2 	 1
1
64

⋯ 2 		 1
127
64

 

inches. The total length is thus about 1602 inches. 

Because each sheet is 10 inches long, that is about 160 sheets. Each sheet absorbs one 
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fluid ounce, so one roll absorbs 160 fl. oz. To clean 3 gallons we need  

rolls. Brand B is clearly the better choice for this problem. 

 

Looking back 

Polya points out that when we have obtained a long and involved solution we 

naturally want to see whether there is a more direct and clear way to solve the problem. 

He advises one to ask the questions: Can you derive the result differently? Can you see it 

at a glance? (Polya 1973, p. 61). He also points out that even when we have found a 

satisfactory solution we may still benefit from finding a different solution, which may 

give us further understanding or allow us to look at the problem from a different 

perspective. Polya encourages us to study a result and try to understand it better, to see a 

new aspect of it (p. 64). In the same way that we might get a better perception of an 

object by using two senses, we might get a better understanding of a problem by finding a 

solution in two ways. Future teachers need to learn to guide their students on how to find 

in a result itself indications of a simpler solution.  

The approach used by the future teachers described above has several advantages. 

One is that it highlights the use of an arithmetic sequence and how the average of its 

terms can be used to obtain their sum. Because 1 + 2 + … + n  is an arithmetic series, the 

average of all the terms will be the average of the first and last terms, . One way to 

read the formula for 1 + 2 + … + n =  is that to obtain it we multiply the average 
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be thus  for the diameters of the average circles, and  for the useful cross-

sectional widths of the rolls. The number of sheets will be inversely proportional to the 

thickness of each sheet, so the ratio between Brand B and Brand A is  = . The 

two brands have the same lengths of sheets, so to get the ratio of the number of sheets of 

Brand B to the number of sheets of Brand A, we just need to multiply these three ratios, 

which yields . Because the ratio of the absorption efficacy per sheet of 

Brand B to Brand A is , the ratio of number of ounces of water absorbed by a roll of 

Brand B to the number of ounces of water absorbed by Brand A is 

 . So Brand B is about twice as good as Brand A for this task. 

This agrees with our previous result that the ratio of rolls needed is .  With this 

alternative approach of multiplying ratios it would be easy to make adjustments in case 

the length of the sheets or the price was not the same for both brands. All we would have 

to do is to multiply the previous product of ratios by the ratios of the prices, and by the 

ratio of the length of the sheets. In these cases, as with the thickness of the sheets, we 

would be dealing with inverse ratios. 

To find how many rolls of Brand B we would actually need, we can find the 

number of sheets in a roll, using the average circumference (4π), multiplying it by the 

number of layers that fit in the usable cross-sectional width ( ), and dividing by the 
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length of the sheets (10). So the number of sheets is . (Notice that 

this result is very close to the result obtained with the other method.) Because each sheet 

of Brand B absorbs one ounce of water, this is also the number of fluid ounces that each 

roll can absorb. The total number of rolls required is  . 

Exercise 3. Derive formula (1) as the limit of polygonal rings formed by trapezoids (see 

Figure 4). 

Exercise 4. Discuss in what ways is formula (1) analogous to the formula for the volume 

of a torus obtained by rotating a circle around an axis outside the circle. The volume of 

the torus is equal to the product of the area of the circle times the circumference traced by 

its center. 

 

Figure 4. A ring formed by trapezoids 

 

Concluding remarks 

When teachers pose a mathematical problem to their students, they often do so 

because the problem can be solved with a mathematical approach that the teachers want 

to illustrate. Problem solving can be used as a powerful means to learn mathematical 

concepts and procedures (Lester & Charles, 2003; Schoen & Charles, 2003). In the above 

problem, the intent of the preservice teacher who posed it was that students have an 
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opportunity to use an arithmetic progression and the formula for its sum. Problems can be 

excellent ways to foster the development and understanding of particular mathematical 

concepts and procedures. However, students might use an alternative solution process 

that does not require the concept or process that the teacher wanted to emphasize. 

Teachers thus need to be aware that students might find alternative solutions that do not 

involve those concepts or procedures. In that case, the teachers needs to decide at what 

point, and to what extent, they should discuss those alternative approaches. It is important 

that teachers look at problems they pose from multiple perspectives, and try to foresee 

alternative solutions. That way teachers can better plan how and when to use those 

alternatives so that it becomes an enriching experience for all the students, rather than 

becoming a situation where some students have the opportunity to develop their thinking 

with respect to specific mathematical concepts and methods and others do not. Of course, 

sometimes students may surprise us and find an approach we did not foresee.  

Learning to see the easy is one of the possible benefits of looking back at a 

problem and reflecting on its solution. Finding a simpler solution does not mean that our 

original approach was less valuable. The first method that occurred to us very likely gave 

us some insight into mathematical relations of a certain kind in the given situation, and 

perhaps used mathematical ideas that were freshest in our minds. Furthermore, often we 

find a simpler path only after we are able to solve the problem in another way. By taking 

time to consider alternatives once they have found a solution, students may find an easier 

solution. Students may realize it is not always necessary to apply the most complicated 

mathematical concepts that they know in order to solve even what appear to be difficult 

problems.  
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However, even when we find a simple solution first, it is worthwhile to take a 

second look at a problem and look for a different solution. The second solution may give 

us a different kind of insight. As Polya points out, there are also other benefits of looking 

back, such as establishing connections. A few connections were hinted at above, but a 

full treatment would go beyond the main focus of this paper. 

There are other authors who emphasize the importance of reflection when solving 

problems. Shulman states that “the more complex and higher-order the learning, the more 

it depends on reflection—looking back—and collaboration—working with others.” 

(Shulman 2004, p. 319). The importance of reflection is not restricted to mathematics 

learning. Shulman also describes how studies of expertise in the solving of physics 

problems indicate that the most able problem solvers do not learn by just doing, that they 

do not learn from simply practicing the solving of physics problems. Rather they learn 

from looking back at the problems they have solved and learn by reflecting on what they 

have done to solve them. Able problem solvers learn, not just by doing, but also by 

thinking about what they have done. (Shulman, 2004, p. 319).  

Good teachers understand and convey to their students the benefits of looking 

back at a problem. Learning to see the easy is one of the benefits. 
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Abstract: This study uses the perspective of schemes to analyze characteristics of 
arithmetic word problems that can influence the process of translation from the verbal 
statement to an arithmetical representation. One characteristic that we have detected in 
the two-step word problems is the presence of one or two connections (nodes) in schemes 
that represent them, and this paper explores whether the number of nodes affects the 
activation of the associated schemas. With students from the 5th and 6th grades of 
elementary school (11 and 12 years of age), we analyze the written productions and 
would stress that the number of connections influences the activation of the right schema. 
Results show that the double connection implicate a greater difficulty for obtaining a 
correct arithmetical representation. Likewise, the presence of a simple or double 
connection between the two relationships means that the students commit specific errors 
that we associate with this characteristic. 
 
Keywords: Two-step word problems, arithmetic, schemes, double node, errors. 
 

Introduction 

Research on problem solving on mathematics education is a wide and varied field, 

and it is not limited to a single study focus; nor is it performed within a single theoretical 

framework (Castro, 2008; Santos, 2008). A good number of studies have centered on the 

use of arithmetic operations to solve word problems. Verschaffel, Greer, & Torbeyns, 

(2006) distinguish four focuses in the study of arithmetic problems: (a) conceptual 

structures (schemes) for representing and solving word problems; (b) word problems 

viewed from a problems-solving perspective; (c) a sociocultural analysis of performance 

on arithmetic word problems; and (d) the modeling approach.  

                                                 
1 Author’s address: Facultad de Ciencias de la Educación, 18071, Granada, Spain. E-mail: ecastro@ugr.es 
2 Author’s address: Facultad de Ciencias de la Educación. Almería, Spain. E-mail: afrias@ual.es 
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Since the 1990s, there have been a tendency in Mathematics Education to 

undervalue the educational value of word problems and stress situated and socially 

mediated approaches to solving authentic, complex problems. Despite this focus, 

Jonassen (2003) indicates that “story problems remain the most common form of problem 

solving in K-12 schools and universities” (p. 267). This paper treats arithmetic word 

problems whose statement contains two relationships between the data and that therefore 

require more than one operation to solve them (two-step arithmetic word problems). We 

perform our analysis from the perspective of schemes (Hershkovitz, & Nesher, 2003) and 

focus on characterizing the double node in two-step arithmetic word problems and the 

schemes to which they give rise, and on studying the influence of the double node on the 

activation of the schemes and the errors this causes. Enright, Morley, & Sheehan (2002) 

indicate that problem features such as those described previously can be related 

theoretically to individual differences in cognition (p. 51). 

 

The scheme approach 

From the semantic perspective on one-step arithmetic problems, once the 

concepts and relationships involved are understood, the child has only to choose the 

correct operation and apply it (Quintero, 1983, p. 102). In problems with several steps, it 

is also necessary to understand the concepts and relationships, but additional issues are 

involved as well. Quintero (1983) indicates that the child must plan and organize the 

order in which to apply the operations and identify the pairs of numbers to which to apply 

each operation. Shalin and Bee (1985) analysis of two-step problems leading to specific 

structures is based on the possible logical combinations of one-step problems. They 
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represent the corresponding scheme of a simple arithmetic word problem by means of a 

diagram (Figure 1) of three connected components in terms of part-whole relationships. 

 

Figure 1. Notation of the triad of components present in the part-whole relationship 

 
If the diagram in Figure 1 represents a mathematical object, we can construct 

more complex mathematical relationships from it using more than one diagram and 

connecting them to each other, forming networks. Following this idea, Shalin & Bee 

(1985) obtain the structure of a two-step problem by combining two triads based on local 

relationships. Each of the different ways of combining two triads like that in Figure 1 

constitutes a different global problem structure. These combinations  (Figure 2) define 

three structures of two-step problems: hierarchy, sharing the whole and sharing a part. 

 

Figure 2. Hierarchical scheme, sharing the whole and sharing a part  

 

Nesher & Herskovitz (1994, 2003) research the influence that the three schemes 

(Figura 2) have on the index of difficulty of composite problems. With a sample of 

students from third, fourth, fifth, and sixth grades in Israel, they find that the variable 

type of scheme has a significant effect on the index of difficulty of these problems. The 

“hierarchical” scheme is the easiest, followed by the “shared whole” and finally the 

“shared part” scheme. The study by Shalin & Bee (1985) also showed that children in the 
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3rd, 4th  and 5th grades (elementary school) had a higher rate of success with the 

hierarchical scheme. In the following section, we will see that the results can be altered 

by other cognitive variables. 

 

Decrease-increase relationship 

In the research performed by the Numerical Thinking Group of the University of 

Granada, with 4th, 5th, and 6th grade elementary school children from Granada (Spain), the 

results obtained by comparing the indices of difficulty of the different combinations of 

the relationships of increase or decrease show that the combinations of increase and 

decrease affect the difficulty of the two-step problems (Castro, Rico, Castro, & Gutiérrez, 

1994; Castro, et al., 1996); Rico, Castro, González, & Castro, 1994; Rico, et al., 1997). 

The four classes of problem are determined by whether the relationship is one of 

increase or decrease.  

Type (I, I). Two relationships of increase. The whole of the first initial 

relationship is a part of the second relationship (hierarchical scheme). 

Type (D, D). Two relationships of decrease. One part of the first 

relationship is the whole of the second relationship (hierarchical scheme). 

Type (I, D). First relationship of increase and second of decrease. The two 

relationships share the whole (sharing the whole scheme). 

Type (D, I) The first relationship is one of decrease and the second one of 

increase. The two relationships share a part (share a part scheme).  

Presented in order of increasing difficulty, they are:  

(I, I), (I, D), (D, I) and (D, D) 
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where the type (D, D) is the most difficult. These results contradict the argument that the 

hierarchical scheme is generally less difficult than the other two schemes. Shalin & Bee 

(1985) and Nesher & Hershkovitz (1994) find that the problems associated with the 

hierarchical scheme are less difficult than the others. However, in Castro, et al., (1996) 

study with additive problems, the problems corresponding to the two extreme 

combinations—the easiest, increase-increase (I, I) and the most difficult decrease-

decrease (D,D)—correspond to the same scheme: the hierarchical scheme. The difficulty 

of the hierarchical scheme is consequently affected by the relationships of increase or 

decrease used to state the problem. Other cognitive variables also appear in two-step 

problems, however, such as the number of connections between the components of the 

basic structure, as we will see in the next section. 

 

Problems with two nodes  

One of the key issues in understanding the structure of two-step word problems is 

understanding the nature of the two elements that compose the basic triad of the part-

whole scheme and the way of connecting these elements between two triads. To 

determine how this is done, Nesher & Hershkovitz (1994) perform a textual analysis of 

the problems, breaking them into components. They distinguish three components in a 

one-step problem. Two of these provide numerical information explicitly (complete 

components) and the other, the question, is missing numerical information (incomplete 

component). 

In the composite schemes for two-step problems (Nesher & Hershkovitz, 1994), 

the connection between the two one-step problems is created by a new component, which 
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they call the latent component of the problem (see Figure 3) and which is common to the 

two simple structures.  

 
Figure 3. Latent component 

From a representational point of view, we say in this situation that there is a nexus 

or node between the two simple structures that produce the corresponding composite 

scheme. Thus, the two simple structures share a component within a two-step problem. 

For example, in Problem 1:  

Problem 1. I bought 5 books. Each book cost 8 euros. If I pay 50 euros, 

how much money will I get back?  

In the first structure, the latent component is the question of the first problem:  

 I bought 5 books  

 Each book cost 8 euros  

 How much do all of the books cost?  

In the second structure, the latent component becomes a complete component:  

 All of the books cost 40 euros. 

 I pay 50 euros. 

 How much money will I get back? 

 
In this problem, the latent component (the price of all the books) is shared by the 

first and second arithmetic structures. This latent component, which is not stated 
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explicitly in the wording of the problem, connects the two structures. The price of the 

books is obtained in the first structure, where it has the function of incomplete 

component. This price is then used in the second structure as a complete component. This 

function of connection between the two structures is what leads us to call it a node or 

nexus of union between the two.  

In the schemes of two-step problems defined by Shalin & Bee (1985) and 

subsequently used by Hershkovitz & Nesher (1996) and Nesher & Hershkovitz (1994, 

1996, 2003), the latent quantity is the only nexus of union between the two simple 

structures. However, the condition of a node does not imply being a latent quantity, nor 

does it mean that this is the only quantity with this condition. The node can also be a 

piece of information given explicitly in the statement and that is shared by more than one 

simple structure within a two-step problem. It is possible to find two-step problems that 

have two simple structures connected by two nodes, as occurs in the following problem:  

Problem 2. John has 5 balls. His grandfather gives him triple the number 
he had. How many balls does John have now?  

 
This problem 2 combines two simple schemes: one multiplicative scheme and one 

additive. Both schemes have two quantities, “John’s 5 balls” and “the balls that John’s 

grandfather gives him,” which are shared. In Figure 4, we see the representation of the 

two simple schemes and how both contain the shared quantities. This kind of two-step 

problem has only two pieces of information or, from another perspective, three pieces, 

but one of these is repeated or has a double function. Therefore, two components are 

shared by the two simple structures, one of these the latent component (balls that the 

grandfather gives) and the other the repeated piece of information (John’s 5 balls) in the 

problem. 
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Figure 4. Simple schemes of a two-node problem  

The quantities that are shared by various simple structures within a composite 

problem have, therefore, the condition of node, independently of whether these quantities 

are given pieces of information or intermediate unknowns (latent quantities) in the 

problem.  

 Types of two-node schemes  
 

The problem we have used as an example of a double node is hierarchical in kind 

(see Figure 5), and the 15 balls constitute the latent variable, which is the intermediate 

unknown quantity.  

 

Figure 5. Hierarchical scheme 

We can see that the quantity of 5 balls appears in the two simple structures. If we 

merge both boxes into a single one, as shown in Figure 5, we get a sub-scheme of the 

hierarchical scheme, but one in which two quantities are shared by the two simple 

schemes.   
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Figure 6. Composite scheme HP 

When a part and the whole of one simple scheme matches with the part and part 

of the other simple scheme (P, W = P, P), we call this composite scheme HP, since it can 

be obtained from the hierarchical scheme H, since one part of each simple scheme 

coincides with the other (see Figure 6). 

 
In the other two structures of two-step problems, sharing part and sharing whole, 

new substructures also emerge with this condition of considering the double node. In the 

case of the structure “sharing part” (SP), we can generate a substructure by making it 

agree with the other part of the two simple schemes (see Figure 7). We call this 

substructure SPP. 

 

 

Figure 7. Composite scheme SPP 

An example of a problem corresponding to the structure SPP is  
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The double node as a characteristic of some two-step problems can be related 

theoretically from the cognitive point of view to individual differences or different 

success rates (Frías, & Castro, 2007). This is due, for example, to the limited capacity of 

the work memory or, as Embretson (1983) suggests, to the fact that “the characteristics of 

the stimuli of the items in the tests determine the components that are involved in finding 

the solution” (p. 181). From the foregoing considerations, we find it important to study 

whether the two-node problems have different cognitive effects on the subjects.  

For the specific case of two-step problems, the variable node takes more than one 

value. We have described two-step problems with one node and two-step problems with 

two nodes. We now ask whether the number of nodes in a scheme is a cognitive variable 

that can influence the problem-solving process for two-step problems in students who are 

finishing their elementary education.  

Our conjecture is that the number of nodes in a composite two-step problem 

affects the way in which the advanced elementary school students represent two-step 

problems internally. This difference should become visible in issues such as the success 

rate and the emergence of errors specifically involving the number of nodes. 

 

Method 

Participants 

We performed a study to compare the competence of students from the fifth and 

sixth grades of elementary education (ages ranging from ten to twelve) in two-step 

arithmetic problems and to determine whether the number of nodes in the problem 

influences the process of solving it. 172 students from public elementary schools in the 
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city of Almería (Spain) participated in the study, 86 students from 5th grade and 86 from 

6th.  

 
Variables 

Given the wide variety of two-step problems, we limited the study to using a 

carefully-defined set of problems. The first condition we imposed on the two-step 

problems used in the study was that the semantic category corresponding to the first 

simple structure of the problem be comparison (additive or multiplicative) and the 

semantic category corresponding to the second simple structure of the problem be 

combination, whether additive or a cartesian product. We imposed this restriction to 

control for the possible effect that the kind of semantic category in each of the simple 

schemes could have on the overall solving of the two-step problem. 

Once we established this condition, the problems we used were chosen using 

factorial design with four factors or independent variables of the problems, which are: 

 
First factor  

The first factor, which we call A, includes whether one of the simple structures 

that make up the two-step problem has an additive or multiplicative character. We 

understand the additive structure here to include problems that are solved with one 

addition or subtraction. Likewise, we understand by multiplicative structure problems 

solved with one multiplication or division. The variable A refers to the double arithmetic 

relationship present in the two-step problem and in this study takes two values, 

corresponding to the possible combinations of a problem composed of two steps, a simple 

additive structure and another multiplicative structure:  
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 Al for an additive structure followed by a multiplicative structure 

(+, ×).  

 A2 for a multiplicative structure followed by an additive structure (×, +).  

Second factor  

Since the two-step problems that compose the instrument we have used all contain 

a simple scheme of comparison, we have limited the possible variants of these 

comparison problems to two kinds, consistently worded comparison problems and 

inconsistently worded comparison problems (Lewis & Mayer, 1987). Attending to these 

two kinds of wording for comparison problems, we consider the variable to be the kind of 

wording in the comparison, which we have called variable E and which takes two values:  

 El if the wording of the comparison is consistent.  

 E2 if the wording of the comparison is inconsistent.  

El    Consistent wording E2    Inconsistent wording 

John has 15 marbles  
Peter has 3 times more marbles than John 
How many marbles do they have 
altogether? 

Peter has 15 marbles  
Peter has 3 times more marbles than John  
How many marbles do they have 
altogether? 

 
Third factor  

Each of the simple relationships involved in a two-step problem can be of either 

increase or decrease (Castro, et al., 1996; Castro, Rico, Castro, & Gutiérrez, 1994; Rico, 

Castro, González, & Castro, 1994). We call R the variable that combines the two 

possibilities in the double relationship. In this study, we will take into account two 

values:  
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 R1 for the relationship increase-increase (I I).  

 R2 for the relationship increase-decrease (I D).  

From the point of view of direct translation based on key words, this variable 

provides information most specifically about the arithmetic relationship that can be used. 

Increase will refer to addition or multiplication and decrease to subtraction or division.  

 
Fourth factor  

The fourth factor is the variable, our main focus of attention. It includes the 

number of nodes in the two-step problem. The number of nodes, which we call the 

variable nodes (N), has two values in this study:  

 N1 for two-node problems.  

 N2 for one-node problems.  

N1 two-node problems N2 one-node problems 

Mary has 15 trading cards. George has 3 
times more trading cards than Mary. How 
many trading cards do George and Mary 
have between the two of them? 

Mary has 15 trading cards, and Paula has 
90 cards. George has 30 more cards than 
Mary. How many cards do George and 
Paula have between the two of them? 

 
Instrument and procedure 

The instrument used in this experiment was a questionnaire with sixteen 

problems. The sixteen problems correspond to the possible combinations that emerge 

from crossing the four factors mentioned above in a factorial design. So as not to 

overwhelm the study subjects with too many problems, we divided this set of sixteen 

problems into two questionnaires of eight problems each, according to the following 

distribution: 
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 N1 N2 

A1  A2 A1 A2 

E1 R1 Q1 Q2 Q1 Q2 

R2 Q2 Q1 Q2 Q1 

E2 R1 Q1 Q2 Q1 Q2 

R2 Q2 Q1 Q2 Q1 

Q1 Questionnaire Nº 1   Q2 Questionnaire Nº 2 
 

The problems in these questionnaires were solved by the children individually and 

silently in the classroom using pen and paper. Each child was given a questionnaire at 

random. 

 
Results 

The answers given by the subjects to the problems posed were evaluated as 

correct or incorrect, taking into account the choice and execution of the operations, as 

well as the expression of the result. We have classified a response as correct when the 

subject has chosen the right two operations between the corresponding data and has 

expressed the solution correctly, writing it in the space provided for the result the 

expression of the relationship that each problem required according to the instructions 

provided on the questionnaires. This circumstance occurred in different ways. The most 

common was to perform two operations, executing the corresponding algorithms, and to 

conclude with the full expression by answering the question posed in the problem. 

However, we have also considered correct those answers in which this was done 

implicitly. For example, given the problem: 

Javier has 12 pairs of pants. Javier has 3 more shirts than pairs of pants. 
How many ways can Javier combine pants and shirt? 
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Some subjects did one of the operations (12+3=15) mentally, so that the only 

explicit operation that appears is 12×15=180. In cases like this, we have evaluated the 

answer as correct, since we understand that student chose the two correct operations, 

performed one as a mental calculation and the other as a written algorithm, and provided 

the correct answer: “Javier can combine his shirts and pants in 180 different ways.” We 

have also considered answers to be correct if the answer was expressed elliptically, for 

example, “They can be combined in 180 ways.” In cases where students chose the 

operations to be performed correctly and used the correct data but committed a 

calculation error in the algorithm, we have considered the answer to be correct, even 

though the result shows a quantity different from the correct one. In this case, we believe 

that this kind of error does not affect the subject’s understanding of the problem. 

The answers were evaluated as incorrect when one of the two operations to be 

performed was not the correct one or the subject did not perform the operation with the 

proper data. No response on one of the operations was also qualified as incorrect, since it 

shows that the subject did not understand at least one of the two relationships in the 

problem. No answer at all was also evaluated as incorrect. 

 
The success rates at which the children in the study were able to translate each of 

the questionnaire problems into its arithmetic representation are shown in Table 1 as 

percentages. They range from 20% for the most difficult problem to 90% for the least 

difficult. This result shows that some of the factors that define the problem influence their 

difficulty. To highlight which variables have a significant influence, we have applied a 

variance analysis to the four factors. 
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Table 1. Percentages of success in the questionnaire problems according to factors  

 N1 -two nodes N2 -one node 

A1 +× A2 ×+ A1+× A2 ×+ 

Consistent 
E1 

R1   I I 37 80 36 90 

R2  I D 34 57 33 58 

Inconsistent 
E2 

R1 I I 28 36 34 55 

R2 I D 22 30 20 51 

 
Using the success rate measured in percentages as a dependent variable, we have 

applied variance analysis to detect whether the four factors defined in the study had a 

significant effect on the success rate. The variance analysis applied to the data obtained 

shows a significant effect on the following cases:  

 variable N number of nodes (F = 6.677, p=0.010). The percentage of success 

on problems with one or two nodes is: two nodes-N1 (41%) and one nodes-N2 

(63%). 

 variable R combinations of increase and decrease (F=20.982, p=0.000), with a 

percentage of success on the combinations of: increase-increase (49%) and 

decrease-increase (38%). 

 variable E or kind of wording (F=56.504, p=0.000): Consistent (61%) and 

inconsistent (45%). 

 variable A combination of the additive and multiplicative relationships 

(F=116.760,  p= 0.000). The percentages of success on the combinations of 

additive and multiplicative relationships used were: A1(+×) combination 

(30%) and A2(×+) combination  (57 %). 
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We interpret the marked difference in difficulty shown by combinations A1 and 

A2 according to the restriction imposed, that is, that the problems be comparison (additive 

or multiplicative) in the first step and either additive or Cartesian product combination in 

the second step. In problems of the type +×, we use the additive comparison in the first 

step and the Cartesian product in the second step. In problems ×+, we use the 

multiplicative comparison in the first step and the additive combination in the second. 

The presence of the Cartesian product in the simple scheme corresponding to the second 

step of the problems seems to cause the difference in difficulty.  

 
The only significant interaction effect influenced by the variable of node is N×A 

(F=6.084, p=0.014). This interaction does not change the order of difficulty of the values 

of the variable node, however, as can be seen in graphic 1. 

 

Graphic 1. Percentages of correct answers according to nodes and combinations of 

arithmetic relationships 

 

In graphic 1, we can see that the problems with two nodes are more difficult to 

translate into a symbolic representation than the problems with one node for the two 

combinations of arithmetic operations. We can conclude from this analysis that the 
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number of connections between the two relationships is a significant differentiating 

characteristic in two-step problems. The percentages of success on one-node problems 

(63%) and two-node problems (41%) show a significant difference in students’ 

performance between these two kinds of problem. This difference does not depend on the 

other factors considered. 

 
Error analysis 

In written products, we found that in addition to typical errors already identified 

in one-step problems (such as the additive error or the inversion error), the sample 

subjects produced new errors in the two-step problems, errors that we identified as errors 

belonging to the double structure itself. Since our goal is to characterize the issues that 

differentiate the two-step problems, we will stick to the description of the errors specific 

to the double structure. 

 
Type 1 error: performing only one operation 

This error is characterized by using only one operation to solve a two-step 

problem. The operation may be either one of the two correct operations that should be 

performed or the wrong operation for another reason. In all of the cases, the subjects do 

not attempt to perform more operations but instead give as an answer the result of the 

only operation that they have performed with the two pieces of information from the 

problem. Most of the cases observed occurred in problems with two nodes (and only two 

pieces of information). In a few cases, this kind of error occurred with a problem of only 

one node (with three pieces of information). Table 2 shows examples of this kind of 

error.  
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Table 2. Error in performing one operation  

Problems Errors Comments 
Example 1 
Anne has 12 pairs of pants 
Anne has 3 shirts fewer than pants. 
How many ways can he combine 
pants and shirts? 

 
12  3 = 9 
Result: He can combine 
pants and shirts in 9 
ways  

 
Omits the second 
operation  

Example 2 
John has 24 balls 
John has 3 times fewer balls than 
Peter. How many balls do they 
have between the two of them? 

 
24 + 3 = 27 

 Result: Between the two 
of them, they have 27 
balls 

 
Omits the first 
operation  

Example 3 
Anne has 48 trading cards 
Mary has 4 times more trading 
cards than Anne. How many do 
they have between the two of 
them? 

 
48 × 4 = 192 

Result: Between the two of
them, they have 192
trading cards 

 
Omits the second 
operation  

 
In the problems used in this study, the two relationships are ordered; the first one 

is always a comparison and the second a combination. For this kind of error, we can 

therefore distinguish the cases in which the subject forgot the first relationship from those 

in which the subject forgot the second: 

 
1. Forgetting the first relationship  

In this case, subjects take the two pieces of information in the problem and 

perform an operation without taking into account the first relationship in the context of 

the problem. They focus their attention on the second relationship, which is the one in 

which the problem’s question appears. Examples 1 and 2 in Table 2 illustrate this case. 

 
2. Forgetting the second relationship  

In this case, they take the two pieces of information in the problem and work with 

them in the context of the first relationship stated in the problem, not taking into account 
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the second relationship. In the result, they answer the question in the problem that 

corresponds to the second relationship although this value was obtained with the first. 

Example 3 in Table 2 fits this type of error. 

 
Type 2 error. Ordered data  

This error is characterized by choosing the data for performing the relationships in 

the same order in which they appear in the problem. In certain problems in our study, this 

leads to an error in the two relationships in the problem. The students take the first two 

pieces of information that appear in the word problem and perform the operation, then to 

perform another operation on the result and the third piece of information, and finally, 

with this result, to find the solution. An example of this error can be seen in the solution 

given to the problem in Table 3. 

 
Table 3. Error in ordered data  

Problem Solution with Type 2 error 
George has 18 shirts and 6 belts. George has 3 shirts more 
than pairs of pants. How many ways can he combine pants 
and belt? 

18  6 = 12;  12 × 3 = 36 
Result: He can combine 
pants and belt 36 ways

 
This way of acting indicates recognizing the two relationships in the problem, 

even distinguishing between the two simple structures, one additive and the other 

multiplicative. But the subjects do not associate the data and the relationships in each 

structure correctly. This leads us to think that the choice of data is mechanical or 

algorithmic and that order of presentation takes precedence over any other characteristic 

of the problem. In many cases, we see that, if the correct order coincides with the order in 

which the data are presented, the subjects give the correct response, but when the correct 

order is different than the order in which the data are presented, students make mistakes. 
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These last two kinds of error, one operation and ordered data, occur in the same 

subjects; that is, that for the two-node problems they commit the error of one operation 

and for a one-node problem, that of ordered data. 

 
Type 3 error. Repeating the unshared information  

In the two-node problems, we saw an error that consisted of using twice the 

unshared piece of information in the two simple structures that compose the two-step 

problem, while using the shared piece of information only once. An example is shown in 

Table 4.   

   

      Table 4. Error of confusing repeated information  

Problem Solution with Type 3 error 
Lucia has 15 shirts. Lucia has 3 fewer 
shirts than pairs of pants. How many 
ways can she combine shirts and pants? 

15 + 3 = 18;  18 × 3 = 36 
Result: She can combine shirts and 
pants in 36 different ways 

 
The previous solution that contains the Type 3 error shows that the subjects have 

recognized the two relationships and distinguished two structures, one additive and the 

other multiplicative. Further, the repetition of one piece of information from the problem 

in the calculations (in this case, the 3) seems to indicate that the subject recognizes that 

he or she must use this piece of information twice. The error occurs in choosing the right 

piece of information. 

 
Type 4. Other errors 

In this section, we include errors that do not fit any of those mentioned above, 

cases in which it is difficult to know what motivated the subjects’ choice of operations. 

Most of these cases occur in problems with one node in which the student only 
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recognizes as characteristic of the problem that there are always two or more operations 

but chooses the operation and/or the data related to it arbitrarily or by chance. 

The distribution of the four kinds of error described according to levels of 5th and 

6th grade are shown in Table 5. Here, we differentiate two subtypes two subtypes for the 

error one operation one type for the error ordered data and another for repeat unshared 

datum, whereas in classifying the others we include the unclassifiable wrong answers in 

the foregoing, as well as missing answers. 

 

Table 5. Frequencies of each error at each level and total errors 

Error 
type Subtype 5th grade 6th grade Total 
  Frequency %. Frequency %. Frequency% 

One 
operation 

Forgetting the first 
relationship  16 16.16 10 11.2426 14% 
Forgetting the 
second relationship  45 45.45 52 58.4297 52% 

Ordered 
data  22 22.22 14 15.7336 19% 
Repeat 
unshared 
datum  6 6.06 9 10.1115 8% 
Others  10 10.10 4 4.49 14 7% 
Total  99  89  188 100%
 

As can be seen in Table 5, all kinds of error detected appear in the two levels (5th 

and 6th grades). Overall, the error in one operation has occurred with similar frequency at 

both levels, but this is due to the fact that the two subtypes compensate for each other. 

That is, students in 5th grade omit the first operation more frequently, whereas those in 6th 

omit the second more frequently. The next most frequent error is that of ordered data, 

which occurs with greater frequency in students in 5th grade than those in 6th. 
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Since we chose and identified the problems based on the four factors (N, E, R, A), 

it is reasonable to attempt to relate the types of error defined to these factors. We 

classified the association between the errors as belonging to two-step problems. The four 

factors are shown in Table 6, which includes the distribution of frequencies for each of 

the problems, according to the combination of factors.  

 
Table 6. Frequency of errors in the combination of four factors 

Factors Type of error 
 
 
N 

 
 
E 

 
 
R 

 
 
A 

One operation Ordered 
data  

Repeating 
the unshared 
information  

Others 
 

Forgetting the 
first relationship

Forgetting the 
second relationship  

 
 
 
N1 

 
 
E1 

R1 
 

A1 7 15 0 3 0 
A2 0 13 0 0 0 

R2 A1 3 18 0 1 0 
A2 1 10 0 0 0 

 
 
E2 

R1 A1 4 11 0 1 0 
A2 0 10 0 1 0 

R2 A1 5 13 0 3 0 
A2 5 4 0 0 0 

 
 
 
N2 

 
 
E1 

R1 A1 2 0 9 0 2 
A2 0 0 1 1 0 

R2 A1 0 1 6 0 5 
A2 0 0 4 0 0 

 
 
E2 

R1 A1 0 0 11 1 2 
A2 0 0 2 0 1 

R2 A1 1 0 3 3 4 
A2 0 0 0 1 0 

 
 
Conclusions 

In this study, we have demonstrated a new characteristic associated with two-step 

word problems: the number of connections between the two simple structures that 

compose the problem, which we have called “node.” We have established a specific class 
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of two-step arithmetic word problems that contain only two known quantities in their 

wording. We have shown that these problems have a common characteristic: they are 

formed of additive and/or multiplicative structures connected by two nexus or nodes. Our 

starting hypothesis is that the number of nodes affects the difficulty of translating the 

wording of the problem into a mathematical representation. With a sample of students in 

the last two grades of elementary school in Spain, we have confirmed this hypothesis, in 

the sense that the two-step arithmetic word problems with two nodes are more difficult to 

translate into arithmetic expressions than similar problems with one node. Further, we 

have significant evidence that the result is not influenced by other variables that also 

influence the difficulty of translating arithmetic expressions, such as whether the 

relationship of comparison is expressed in consistent or inconsistent language or whether 

the additive and multiplicative relationships are of increase or decrease. The result is also 

independent of the combinations of additive and multiplicative structures that compose 

the scheme of the two-step problem. Although there is significant interaction between the 

factor node and the factor that represents the combinations of additive and multiplicative 

structures, the analysis of this interaction shows that the order of difficulty in the two-step 

problems remains the same.  

Likewise, from an analysis of the errors committed by the children, we have 

found that in addition to the errors already identified in one-step problems and reviewed 

in the literature, there are patterns of error associated with two-step problems; that is, 

errors that do not occur in one-step problems. We stress the presence of three of these: 

performing only one operation, working with the data in the order in which they appear in 

the statement of the problem, and using one piece of information twice, in the two 
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operations, when in reality it should be used only once in one operation. The error of 

performing one operation occurred with greater frequency in the two-node problems, 

whereas the error of working with the data in the order in which they appear occurred 

more often in one-node problems. Therefore, the number of nodes is an issue that enables 

us to differentiate between types of problems and to explain part of the difficulty that 

two-step arithmetic word problems pose to children. When the students have to solve 

word problems, the number of nodes in a two-step problem is shown to be a cognitive 

variable that influences the problem-solving process.  

 
The limitations of the study performed are related to the kind of problem, the 

students’ level, and the research focus adopted. Within the different semantic categories 

of the problems identified in the additive and multiplicative structure, our study imposed 

the restriction that the first relationship stated in the problem corresponds to the semantic 

category of additive or multiplicative comparison. Likewise, the second relationship 

always corresponds to an additive combination or a multiplicative combination. These 

conditions can mediate the results obtained in terms of difficulty, kind of error, and 

frequency of error. The results obtained must also be restricted to the students’ level. In 

our case, these are students at the end of their elementary education. The results cannot 

therefore be extrapolated to lower levels, although similar results could emerge in the 

first year of the next educational level, the first year of secondary education. Although the 

methodology employed is valid for achieving the goal we proposed and the evidence 

shows the representations that the students produce in response to the two-step word 

problems, they are sensitive to the presence of one or two connections between the 

relationships. This is already a significant result from the point of view of the 
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development of the school curriculum. This study could be continued by tackling from a 

qualitative point of view the psychological reasons for the different student errors in 

problems with one and two nodes. 
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Trajectory of a problem: a study in Teacher Training 
  

Alain Kuzniak, Bernard Parzysz & Laurent Vivier 
Laboratoire de Didactique André Revuz, Université Paris Diderot, France 

 
Abstract: Problems are frequently used in mathematics to introduce and convey new 
notions and skills. Hence, teachers transform and adjust those problems to their students' 
level. The present study focuses on this transformation process on the particular case of a 
geometric problem posed by two teacher educators in one French Institute for Teacher 
Training. The whole process is described as a trajectory of the problem through various 
institutions from training center to secondary school and back. Before presenting the 
notion of trajectory of the problem, some elements about a general theoretical frame 
which refers to didactics of mathematics are presented. 
 
Keywords: Geometry, open problem, problem situation, problem solving, teacher 
training, technologies. 
 

 

Introduction 

The idea of grounding the teaching of mathematics on making students solve 

problems is not new, especially in primary education. From the 1970’s on it has been 

very popular in many countries, undoubtedly as a reaction to the abstract teaching given 

during the so-called ‘modern math’ period. This pedagogical trend was variously 

structured according to the country, and the use of problems for learning maths depends 

to some extent on both cultural traditions and theoretical frames underlying teaching 

which are specific of each country. We became aware of these differences on the 

occasion of a joint research undertaken by a French team (from the LDAR, Paris-Diderot 

University) and a Mexican team (from Cinvestav, Mexico-city). The scope of this study, 

presented at the Cerme 7 Conference (Rzeszów, 2011) by Kuzniak, Parzysz, Santos and 

Vivier (2011), was the question of the initial training of teachers to the use of 

technologies for the teaching of maths. On the Mexican side, the implementation was 
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based on the problem solving methodology, whereas on the French side the stress was put 

on the notion of open problem, in connection with Brousseau’s Theory of Didactical 

Situations (TDS). 

In this article we shall present in detail our approach for this research, within a 

training course for prospective mathematics secondary school teachers, with reference to 

some of the theoretical frames used by our team, and especially the notions of open 

problem and instrumental approach (sec. 1.1 and 1.2). Besides, the training course 

situation here studied belongs to what can be described as a training homology strategy 

(sec. 1.3). The problem at work is used to develop among pre-service teachers, not only 

their mathematical knowledge, but also their didactical knowledge.  

After having exposed an a priori analysis of the problem (sec. 2), we describe in 

section 3 the work required from the students-teachers which is split into three steps. 

Then, we expose and analyse the various transformations of the problem chosen for the 

training. 

Finally, in discussion section (4), we define a framework (sec. 4.1) intended to 

describe and analyse what we call the trajectory of the problem, that is its global 

evolution, from its use in the training course to its setting up in a regular classroom. We 

conclude the section (§4.2 sq.) with remarks on some important points related to teacher 

training. 

1. Context and stake of the study 

1.1 Problem solving in French context 

As Artigue and Houdement (2007) underscore it, there does not exist a tradition 

of education research on problem solving in French didactic research even if Polya and 

Schoenfeld works are well known. This characteristic partly results form the influence of 
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the Theory of Didactical Situations (TDS in the following) initiated by Brousseau (see 

Brousseau, 1997, for reference texts in English) and from the pedagogical approach 

developed by the IREM (Institut de Recherche sur l'Enseignement des Mathématiques). 

Both introduced two kinds of perspective on problem solving: problem situation and open 

problem.  

The notion of “problem situation” appeared in France in the 1980’s in 

Brousseau’s TDS, which is based on a socio-constructivist conception of learning. A 

problem situation is a learning approach aiming at fostering the acquisition of a new 

knowledge by the students. Its setting up implies identifying previously their conceptions 

by analysing their errors. On this basis the teacher conceives of and sets up a situation 

presenting some specific features, namely: 

 be relevant for the cognitive objective aimed at;  

 have a meaning for the student;  

 allow him/her to begin the search for a solution;  

 be rich (in terms of mathematical and heuristic contents);  

 be possibly formulated within several conceptual “settings” (Douady, 1986) or 

“semiotic registers” (Duval, 2006). 

The notion of “open problem” was introduced at about the same time (Arsac et 

al.1988, Arsac & Mante, 2007). In comparison with the problem situation, the aim of an 

open problem is methodological rather more than cognitive. The students are induced to 

implement processes of a scientific type, i.e. experimenting, formulate conjectures, test 

them and validate them. The problem must belong to a conceptual domain in which 

students are somewhat familiar with, the wording (statement) has to be short and induce 
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neither a solution nor a solving method. Here is an example taken from APMEP (1987): 

What is the biggest product of two numbers which can be obtained by using once each of 

the digits 1, 2, 3,…,9 to write these numbers? 

In fact, open problem and problem situation refer to two complementary sides of a 

mathematician’s work:  

 in the case of an open problem the question is to find a genuine and personal 

solution, with one’s own means, the general solution can be out of reach of the 

students (and possibly the teacher); 

 in the case of a problem situation the question is, starting from a specific 

problem, to elaborate a more general knowledge (concept, process…) which is 

intended to be institutionalised, socially acknowledged and mastered by all the 

students. 

The French official curricula for junior high school integrated recently − though 

without naming them − these two practices: 

If solving problems allows the emergence of new elements of knowledge, it 
is also a privileged means to broaden its meaning and to foster its 
mastery. For that, more open situations, in which the students must 
autonomously appeal to their knowledge, play an important role. Their 
treatments require initiative and imagination and can be achieved by 
making use of different strategies, which must be made explicit and 
compared, without necessarily privileging one of them. (BOEN 2008, page 
10, our translation.) 
 
The notion of research narrative (narration de recherche), which is explicitly 

linked with those of open problem and problem situation, appeared in France some 

twenty years ago, first at junior high school level, before being extended to senior high 

and primary school (Bonafé et al. 2002). It involves asking the student to write an 

account of the thought processes he/she has undertaken in order to solve a given problem, 
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pointing out his/her ideas, successes, failures, etc. The features of the problem are the 

same as for an open problem, but its statement has often several questions and is such 

that the student must be able to start a research, test his/her results and validate them. 

And, if possible, different solutions can be considered. 

1.2 Integration and influence of technologies 

Pre-service teachers in maths are accustomed to solving mathematical problems 

with specific software, mainly of the symbolic calculation or dynamic geometry types but 

this does not mean that they are prepared to use them as future teachers. Research studies 

into teaching in technological contexts (see Laborde, 2001) show that the students 

(preservice teachers) do not have or have little knowledge of the teaching of mathematics, 

that is to say, they are unaware of the development of mathematical notions in teaching 

situations and they have difficulties in the use of software in a learning situation. This 

makes it necessary to integrate specific work in the form of understanding teaching using 

software into teacher training. 

Specific studies on teacher training within a technological context (see Chacon 

and Kuzniak, 2011) are few. And they show the need to go more deeply into processes 

regarding proof and the structuring of different spaces of knowledge (teaching, 

mathematical, instrumental) which a teacher must structure when using dynamic software 

for geometric learning.  Moreover future teachers have to be aware of secondary school 

students difficulties related to instrumental knowledge.  

1.3 Teacher training 

Till the end of 2010, IUFMs, Instituts Universitaires de Formation des Maîtres 

(French University Training Colleges), have been in charge of the formation of 

preservice teachers. The IUFMs were accepting, after a first selection, maths graduate 
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students from any University (three years of study). During one year, students were 

preparing a competitive examination with academic maths knowledge. The successful 

candidates received a theoretical and practical education of one year (the “second year”) 

in the Institute and were in charge of a class for six hours a week; they received a salary. 

Nowadays, students need to have a master and pass competitive examination to become 

teachers. Preservice secondary teachers could follow a master in teacher education (two 

years) at University, they are not in charge of a class and are not paid during the second 

year. Our experimentation was made in 2010 before the new system. 

As it is well known, preservice teachers need a set of knowledge on maths and 

teaching, usually described with the notion of Pedagogical Content Knowledge (PCK) 

introduced by Shulman (1986) to complement subject content knowledge, and based on 

this idea, various refinements have been made to describe knowledge that is really needed 

to teach mathematics known as Mathematical Knowledge for Teaching (MKT). Teaching 

mathematics is obviously connected to Mathematical Content Knowledge but also to 

other ones that are not automatically owned by a specialist of mathematics and that are 

more or less close to mathematics like history, epistemology, didactics, psychology or 

pedagogy. This large set of knowledge is classified in two parts. The first one, that is 

made explicit and structured clearly within the frame of didactical theories, constitutes 

Didactical Content Knowledge. The second one, that is not explicitly written and 

theorised, but exists in the professional action of each teacher is what is called “third 

knowledge” (Houdement & Kuzniak, 2001). Within this framework, the question is how 

to introduce and combine the various types of knowledge. And how to give to students 
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who are specialists of mathematics at university level, a level in school mathematics 

which are often far away from the first one.  

The combination between various types of knowledge can take different forms: 

they can be suggested to or developed by the students; they can be juxtaposed or 

connected; the connection can be explained or not…So we have distinguished various 

strategies which differ concerning the explanation of knowledge, the combination 

between them, the position they give to the students. Strategies also depend on the 

knowledge considered as dominant and on the transposition made by the teacher trainer.  

During our experimentation, we followed a strategy firstly based on homology 

and then on transposition. That means that we first use the lack of knowledge of content 

and teaching for the classroom of the preservice teachers as a pretext to build a learning 

situation close to a conception of teaching favoured by French curriculum. The preservice 

teachers, or student teachers, are considered similarly as maths students searching a 

problem and supposed to analyse the teaching session to pinpoint elements of didactical 

knowledge and the “third” knowledge. The strategies based on transposition favour 

didactical knowledge. Then, we tried to know more about the phenomena of transposition 

of knowledge that might be a bias in every teaching situation (Chevallard, 1985). Student 

teachers are considered as teachers examining their own teaching way. We detail this 

with the notion of problem trajectory for the training.  

2. Presentation of the problem the folded square and a priori analyses 

The problem we discussed in this paper is the core of a pre-service teachers’ 

training course that conveys didactical knowledge about problem use in the class. For this 

reason, this problem was asked to fulfil several conditions: 

 To be an « open » problem easily integrated in the teachers' training process. 
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 To allow the link between several semiotic registers (Duval, 2006) and the use 

of various mathematical settings (Douady, 1986) related to French curriculum. 

 To be solved in different technological contexts especially those using 

dynamic software. 

 To be open to a number of exploitation and transformation in class with pupils 

and training session with future teachers. This point relates to our idea of 

problems trajectory. 

To these various constraints linked to a training context, we added one more 

related to the context of a comparative study. For that, we chose a problem or a kind of 

problems already given by other researchers using other theoretical approaches. 

The problem posed to the students belongs to a kind of problems named “shop-

sign problems” as used in Artigue, Cazes and Vandebrouck (2011). In such problems, 

with geometric support, two areas representing a shop-sign are determined by a point 

situated within a square or a circle or a rectangle... Both areas change in function of the 

position of the point in the square. These problems are introduced in a geometric setting 

but to solve them, a change to algebra or calculus settings is generally required. Changes 

of semiotic registers with algebraic or functional notations are also needed to get a 

solution. The functions used are quadratic polynomial functions which allow a 

mathematical treatment in synchronization with the secondary school curriculum. 

By using dynamical geometric software as Geogebra, it is also possible to solve 

such problems in a graphical setting by focusing on the covariation of areas without the 

use of a functional or algebraic writing. It is indeed possible of drawing a graphical 

representation of the phenomena studied without any algebraic writing of the function: 
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the curve is defined as a locus of points. The number of solutions that students can find 

and understand is increased by the use of technological tools introducing an experimental 

perspective in the implemented working space.  

The problem was presented in a real context with material and not with a writing 

in mathematical form: A square, cut in a bi-color sheet, is given to the students. And they 

have to fold it along a diagonal and compare the areas of both visible parts of different 

colours. Students are entirely in charge of the problem representation according to the 

first step of the modelling circle in Blum and Leiss (2005) view. By doing that, we do not 

favour any mathematical approaches and frames but to control the task effectively made 

by student teachers and reach our training objectives on the use of technologies for 

teaching, student teachers have been encouraged to use some software as it will be 

detailed in sec 3.1. on problem trajectories. 

The problem is not original and was used in French and Mexican contexts 

(Kuzniak et al., 2011) with the following form, Mexican Task, which will give the reader 

an easier access to the mathematical stake of the problem. 

Mexican Task. A square piece of paper ABCD, the side of 
which is l, has a white front side and a blue back side. 
Corner A is folded over point A' on the diagonal line AC. 
Where should point A' be located on this diagonal (or: how 
far is A' from the folding line) in order to have the total 
visible area half blue and half white?  

 A’  A

B 

C 

D 

 

In this version, a figure is associated to the text and that orients and makes easier 

the mathematical work of students. It is no more necessary to fold the square and the 

problem for students is to find the mathematical expression of both areas: area A1 of the 

blue triangle and area A2 of the white hexagon. Moreover, the side of the square is given 
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as a parameter l and the question is exactly on the place of point A' on the diagonal. 

Visual adjustments are invalidated by calculations for the area of the triangle seems larger 

than the other in the case of equality1. So, to solve the problem students need to reason on 

an elaborate and high level.   

Two great types of reasoning are expected:  

 In the first one, students need to determine an algebraic expression for each 

area and solve a quadratic equation; in France, this approach is only possible 

without help in grade 11.  

 In the second one, it is possible to reason in figural register. Indeed, the 

drawing given in the text makes visible three ''useful'' areas, the two areas to 

compare and a new area A3, equal to A1: the area of the triangle of vertex A 

completing A1 to make the square of diagonal AA'.  This new area does not 

exist in the real folding since the triangle does not have a material existence in 

this case. With the use of this new area, it is possible to find, almost without 

any calculation, a solution of the problem. The drawing makes clear a 

decomposition of the square ABCD which implies the equality 2A1 + A2 = l2 

between the areas and in the case where A1=A2, we get 3A1= l2.  

If x denotes the side of the square made by the two rectangle and isosceles 

triangles, as A1= x²/2, then 3x²/2=l², hence x²=(2/3)l².  

It should be noted that if we take the unknown d on the diagonal, d is the height of 

one of the rectangle and isosceles triangles, then x²=2d² and so d2=l2/3. This way gives a 

simple solution to the original problem posed by Carlson et Bloom (2005): 

                                                 
1 Let’s note that these invalidations are operational since the grade 6 (it has been noted with the 
class of the student teacher STe). 
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A square piece of paper is white on the frontside and black on the backside 
and has an area of 3 in². Corner A is folded over point A' which lies on the 
diagonal AC so that the total visible area is half white and half black. How 
far is A' from the folding line. (op. cit. p. 55) 
 

In the case chosen by the authors, the area of the square is of three square inches 

and we get immediately d²=1 and therefore d=1. This initial formulation of the problem is 

really more complex than those used in our study with a real folding and material that 

allow the student chose a more « natural » variable as the side or the diagonal or in 

Mexican Task approach where a drawing and the variable are provided. The form used by 

Carlson and Bloom is not geometric meaningful because it gives only the area of the 

square. This probably explains much of the difficulties2 encountered by their students, 

though advanced in mathematics.  

The requested use of a software in the task posed in our study changes again the 

nature of the task. The software – Geogebra – gives an area immediately to each of the 

surfaces and, as mentioned, it allows – and to some extent encourages –  the use of 

graphics, without the need for an algebraic notation. One could represent graphically A1 

and A2 in function of x (or d) and then solves the problem by considering the curve 

intersection (see figure 1 in sec 3.2.1). It is also possible to solve the problem by drawing 

the graph of point which coordinates are (A1,A2) – it is a straight line – and considering 

the intersection with the line y=x. 

With this first analysis, it is already clear that the same initial problem can be 

transformed in different ways leading to very different tasks, depending on the support 

and tools provided to students or preservice teachers and obviously on curriculum 

                                                 
2 In the adaptation of STb, described in section 3.2.1, the square has an of area 27 cm2 but 
the square is given to students (within the Geogebra software). 
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content. These tasks may also depend strongly on institutional constraints integrated by 

teachers and their trainers. This is the subject of the study presented in the third section. 

3. Transformations of the problem for teacher training 

In this section we study the various transformations of a single problem P0 inside 

the French educational system through two institutions: a training center for teachers and 

secondary school classes. More precisely, this study involves two groups of student 

teachers and two teacher educators, named TEa and TEb in the following. The aim of the 

research is to grasp the impact of an initial training of math secondary schoolteachers on 

their actual teaching in a classroom: what remains of the training when these teachers are 

back with their students with real constraints? Due to this aim, our study is not based on 

Brousseau’s theory nor on problem solving but on a specific framework presented in 

section 4.1. We suppose that the changes of institutions motivate and make necessary 

some transformations, the study of which will enable to better understand some 

constraints lying on teachers, together with some usual practices of the profession. 

3.1 The transformations of the problem 

In the training course involved in the present study we shall distinguish three 

stages of transformations of problem P0. In this section we describe these stages. 

Stage 1. First transformation: from problem P0 to problem P1 
Problem P0 (section 2) required a first transformation in order to be given in the 

initial training of secondary schoolteachers. The students are prospective math teachers 

and the aim of the educators (TEa and TEb) is twofold: at the beginning it is a matter of 

insuring that their students have well understood the problem with its educational 

potential, the various ways for solving it and the possible difficulties of the solutions. In a 
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second time they will be asked to transform this problem in order to use it in their own 

training classrooms. 

Here is the form chosen for P1 by TEb, together with the working instructions 

given to the student teachers (the form chosen by TEa was very close). 

You have at your disposal a square of paper, one side of which is white and 
the other is grey. A fold shows a diagonal of the square 
A type of folding bringing a vertex of the square on this diagonal, like the one 
performed on the enclosed square, is considered. 
One intends to compare the white and grey areas obtained in that kind of 
folding. 

For both groups TEa and TEb, problem P1 was based on this ‘minimalist’ 

presentation making use of a model: TEa showed the student teachers the folding with a 

material square and TEb decided upon sending the instructions with a material square by 

mail. 

The student teachers are asked to work on the problem and show their entire 

solution process (Schoenfeld 1985).  This solution is complemented by a research 

narrative (cf. section 1.1). It is during this research phase that the student teachers, here in 

a ‘student’ position, had to use at least one technological tool3 to explore the problem 

favouring experimental approach according to the French curriculum.  

The choice of a problem as ‘bare’ as possible from the mathematical point of view 

has also a didactical aim, conveyed by homology: encourage the prospective teachers to 

use, on one side problems with an open question, and on the other side technologies for 

solving them. By so doing the educators hoped that the student teachers would feel free to 

operate their own choices, both from a mathematical point of view (cf. a priori analysis in 

                                                 
3 To be chosen among: spreadsheet, dynamic geometry software, calculator. 
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section 2) and as regards the actual modes of class implementation by integrating 

technological tools (cf. section 1.2). 

Stage 2. Second transformation: from problem P1 to problem P2 
Again in the training center, the student teachers were asked to write down the 

wording of a problem and to make explicit the modes of implementation for their 

students in their classrooms. Actually, the students involved are also math teachers in a 

secondary class (junior or senior high school). At this stage, the issue is not to pose the 

problem in a class but, in the training center, to think about the form that the problem 

could take if it were posed to a class. In that sense it may be considered as a virtual 

problem P2 which marks the outcome of the work for TEa’s training group. This stage 

could possibly have been carried on, but its existence and its control had not explicitly 

been anticipated in the course specific for this group of training students. A description of 

the work of TEa’s group is developed in Kuzniak, et al. (2011). 

Stage 3. Third transformation: from problem P2 to problem P3 
In TEb’s group, after a session of the ‘seminar’ type in which the students had to 

expose their work in stages 1 and 2, they were asked to write down a problem P3, again 

with making explicit its modes of implementation and its aim, and above all to actually 

pose it to their own students. Then they had to present in the training center, again during 

a session of the seminar type, and a posteriori analysis of problem P3 posed in their class, 

illustrating it with their students’ writings. This shift from the training center (virtual 

problem P2) to the classroom (real problem P3) supposes a sharper adaptation of the 

problem to the trainee’s class, in particular because of the real constraints. 

3.2. Description of complete trajectories developed by student teachers  

We call the set of stages transforming problem P0 which has been exposed above 

a trajectory of this problem. Of course, every student teacher develops his/her own 
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trajectory, which can even be trajectories because classroom is an important factor 

influencing the transformations of a problem. 

Below are described the complete trajectories of P0 elaborated by five student 

teachers of the TEb group, named STa, STb,... STe. In fact, the differences between these 

trajectories are essentially due to the mathematical aims linked with the teaching contents 

of each class and with standard activities of textbooks at the different teaching levels. The 

student teachers try to design and develop teaching activities which are as close as 

possible to what we call suitable mathematical working space (Kuzniak 2011).  

Hence, the aims of each problem are different according to the mathematical 

contents aimed at. On the other hand, a teacher will only give his students a problem on 

the condition that it fits well in the syllabus. For this reason it is necessary to supply the 

student teachers with problems having strong potentialities and open to varied 

adaptations. In the present case, problem P1 (cf. section 2), elaborated after discussion by 

the teacher educators, is adequate and, as will be seen, might give rise to adaptations at 

all secondary education levels. Another common characteristic that we noticed is that the 

problem was always used to introduce a new knowledge and never an assessment of an 

old knowledge. 

3.2.1 Two pre-service teachers’ trajectories at grade 10  

In this first case we consider two student teachers, STa and STb, teaching in 

seconde grade (grade 10), which in France is the first course of senior high school. In 

spite of different modes, essentially due to the real constraints of the two classes, the two 

trajectories presented here are very close to each other. Such closeness can be explained 

by the fact that the aims chosen, depending on the teaching program of the class, were 

practically identical, that is, a global study of polynomial functions. Indeed, problem P1 is 
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close to a standard type of exercises which can be found in many textbooks at this 

education level: a geometric statement followed by a modelling by a quadratic function 

enabling to solve the initial problem. 

Stage 1. Solving problem P1 
STa and STb solved the problem in a similar manner and used the graphs of the 

two functions defined by modelling the two areas (triangle and hexagon) generated by the 

use of Geogebra software. The variable chosen, called x, is the length of the side of the 

small square. The intersection point of the two curves gives an approximate solution: the 

common measure of the areas is its ordinate while the measure of the side of the small 

square in the case of equality is its abscissa. However, the use of Geogebra by the two 

student teachers was very different: 

 STa constructed, in a same file, the square simulating the folding and drew the 

two curves representing the areas as functions of the distance between the 

folded vertex and a free point on the folding diagonal (cf. figure 1). 

 STb as well made a construction with Geogebra to simulate the folding (two 

constructions were proposed) but functions are used in another file. She first 

got the two algebraic functions then graphically represented them (cf. figure 

2). In this case Geogebra was in fact used as a graphics software and not as a 

dynamic geometry software. 
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Figure 1. Use of Geogebra by STa for the solving of P1  

 
Figure 2. Use of Geogebra by STb for the solving of P1  

Another difference between STa and STb appears in how each of them considers 

the square length l with the software: 
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 STa fixed the value of the square length to l = 3 cm though he received a 5 cm 

length square by mail: he considered this value inadequate because it did not 

allow a good representation of the two curves on the computer window, the 

size of the objects being estimated too big. This last point shows that he has a 

quite poor knowledge of the software since he modified the situation instead 

of using the Geogebra potentiality to manage the mathematical situation. 

 STb did not fix the square length since the parameter l is managed by the 

software through a cursor and the two functions introduced are defined using 

this parameter. So the abscissa of the intersection point of the two curves 

gives the searched value of x as a function of l.  

Nevertheless, neither STa nor STb undertook a deeper exploration of the situation 

within the software. They only gave approximate values4 of the solution: 

 STa wondered whether the same reasoning is still valid when the value of l − 

that is the square size − is changed but it seems that he did not try answering 

this dilemma. 

 STb did not try to search the link between the solution, which is the abscissa 

xA of point A in figure 2, and the parameter l given by the cursor. Indeed, the 

graph of function l → xA(l) could be easily obtained by considering the point 

of coordinates (l,xA). Then, one can easily see that this graph is a straight line. 

During the exploration of the possible solutions, the two student teachers did not 

use any other software. Their researches within a paper and pencil environment are also 

                                                 
4 STa obtained the approximate value 2.46 for l = 3 cm; STb gave the approximate solution 
values with 5 decimals. STb noticed that these approximate solutions were also approximate 
values of 1/3 (for l =1) or 4/3 (for l=2, cf. figure 2). But this remark was without any consequence 
on splitting the square area into three thirds: STb stuck to her approximate determination of x. 
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very close. The configuration studied is general and both use the l parameter to name the 

side of the square and a variable (or unknown) x to name the side of the small square. 

After calculation of the two areas as functions of x, the problem was solved in the case of 

equality, with the answer 32 / l accompanied by a justification for not considering the 

negative root of the equation. The comparison of the areas was made by using the 

extreme values x=0 and x=l, as well as an argument (implicit for STa) about continuous 

functions. 

On the other hand, a notable difference between STa and STb appeared in the 

management of the geometric setting. Using properties of orthogonal symmetry STb 

developed a detailed proof on the nature of the triangles which seem to be isosceles and 

rectangle. STa apparently remained at a visual stage (of the GI type, see (Houdement & 

Kuzniak, 1999)) since he did not make any remarks on the geometric configuration, 

although he fully used it in his calculations. 

Stages 2 and 3. Problems P2 (virtual) and P3 (real) 
For both STa and STb these problems were integrated in the chapter on 

polynomial functions of degree two. 

For STa, the statement of the virtual problem P2 is identical to P1 (with the 

exception of the length of the side of the square which is fixed to 5 cm) with the use of 

Geogebra in half-classes. Though the precision "the length of the side is not given" can 

be noticed, the statements of the real problem P3 and P2 are almost identical (and so is the 

case for P1). However, P3’s implementation modes are very different. It is finally given as 

homework, the choice being left to students to send a Geogebra file by Internet or to give 

back a paper-and-pencil work. Contrary to P2, the use of the software is not required. 

Sending works by electronic mail had already been used in the year but none of  SPa’s 
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students chose this option for this work, and finally all of them achieved a paper-and-

pencil work (presumably using calculator). 

In both problems, P2 and P3, STa encouraged his students to make the folding by 

themselves. However, in P2 the square was given whereas in P3 the square had to be 

constructed by the students themselves: therefore they had to choose the length of the 

side. 

For STb problem P2 is close to P1 but, with the addition of specific questions, it 

became a closed problem. The l side was fixed to 6 cm and only the case of equality was 

asked; the actual folding was required (for this a bi-colored square on which a diagonal 

had been drawn was given to every student); a question asked to prove the existence of an 

isosceles rectangle triangle; notations for geometric points and the variable x were 

provided and use of Geogebra was considered – in half-classes – to represent the two 

curves and thus allow a graphical resolution of the problem (let’s notice that this type of 

task has already been asked in this class). 

Although if in P3 there is no question about the nature of the triangle, STb 

mentioned that the nature of this triangle would be assumed. Finally l was fixed to 33

(more or less like in problem P0, although STb did not know of it) and the question was 

then more open, no procedure was imposed anymore, the students had the choice 

between Geogebra software and paper-and-pencil environment. Two questions were 

asked: one on the case of equality and the second on the comparison of areas. The 

students, by groups of three, had to cut out a square. Two different aids had been 

prepared by STb: for students who choose Geogebra (the square 33  size was already 

constructed) a hint indicates some Geogebra tools, and for those who chose the paper-
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and-pencil environment several possibilities for choosing the unknown, or variable x, 

were given (this help was not immediately provided and was limited to cases of 

blockage). 

3.2.2 A pre-service teacher’s trajectory at grade 8 

One student teacher, STc, was in charge of a grade 8 class. At this level, two 

mathematical contents, obviously in relation with the syllabus, were considered: 

mathematical proof in geometry (chosen by STc) and algebraic calculation.  

Stage 1. Solving problem  P1 
STc produced a long research, exploring various points of view on the problem, 

remaining mostly in a geometrical setting. He produced proofs using geometrical tools 

and notions: isometric triangles, intercept theorem (known in France as the théorème de 

Thalès), orthogonal symmetry, Pythagoras’ theorem, perpendicular bisector, square, 

bisector, sum of angles of a triangle. He chose a variable x on the diagonal (he 

instinctively did not consider the side of the square) and calculated the areas but he could 

not solve the problem. 

In his research on problem P1, STc made a clear distinction between geometrical 

paradigms GI and GII (Houdement & Kuzniak, 1999) which constitutes one of the stakes 

of the teaching of geometry at junior secondary school. An attempt to cut out figures for 

determining areas (especially for the hexagon) was also noticed but STc concluded that it 

was impossible to find a solution without using the above mentioned geometry tools. 

He also used the Geogebra software to simulate the folding and visualize the 

hexagonal area by a curve, using sizes measured by the software (length and area). Like 

for STa, the value of l leads to a curve that does not fit well in the graphical window. But 

instead of modifying the value of l, STc divided the ordinates of the points by 10. He 
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stopped when seeing that he got a parabola as his calculations had shown him. He did not 

solve the problem, neither with the software (contrary to STa and STb), nor by using the 

notion of function (the curve shows only that there is a parabola). 

Stages 2 and 3. Problems P2 (virtual) and P3 (real) 
STc did not produce a virtual problem P2 (this comes probably from an omission 

or misunderstanding of the statement), and in his real problem for his class he put the 

stress on the teaching of proof. The problem P3 he proposed was stated only in a paper-

and-pencil environment, and there are multiple reasons for this: 

 he points out constraints in the use of the computer room; 

 he thinks that his students are not able to use a software for making a 

conjecture without being guided and he wants to keep the character open of 

the problem; 

 he thinks his grade 8 class is a ‘good’ one. 

He then considers a paper-and-pencil work in small groups, planned for two 

sessions. The problem P3 he poses asks to cut out a 6 cm sided square, with the students 

achieving actual folding, and includes only one question: "How to achieve this folding so 

that the grey area is equal to the white area?" 

The aim is twofold, as it can be noticed in the planned institutionalization: proof 

of the fact that the hexagon is obtained by removing a small square and calculation of the 

position giving equal areas. Besides, after the first session a student proposed to cut out 

the square into three figures having the same area (hexagon and two isosceles rectangle 

triangles) but without being able to justify it. Then STc adjusted his plans and thought of 

proposing a solution based on the areas: the area of the small square must be equal to the 

two thirds of the total area, and therefore the side of the small square (which gives the 
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solution) is 32 /  × 6 cm or 24  cm. However, in the class reality, the aspects linked to 

geometrical proof were hardly tackled during the session.  

3.2.3 Two pre-service teachers’ trajectories at grade 6  

At grade 6 level, the mathematical notions that the students know do not allow the 

use of the previous mathematical supports (functions, algebraic calculation, geometrical 

proof). It seems that the calculation of areas of polygonal figures is the only possible 

mathematical support at this level. Thus, it is not surprising that this very content 

constitutes the choice of both student teachers, STd and STe, who are considered in this 

section. 

Stage 1. Solving problem P1 
STe used Geogebra for modelling the folding. A visual adjustment with the 

measures of the two areas allowed him reducing the gap between them in order to solve 

the problem in an approximate way. Then, in order to make a conjecture, STe tried 

searching for a notable value, the approximate solution could be an approximation of it. 

His attempts were not successful in spite of two constructions depending on whether the 

mobile point is on the side of the square or on the diagonal – these lengths being, in each 

case, fixed to 10 cm for making the research of a conjecture easier.  

Then STe shifted to paper-and-pencil environment. After fixing the length of the 

square to 1, he produced two calculations of the solution by taking two unknowns, 

respectively the side x of the small square, and 1–x. For STe, it is explicit that equal areas 

corresponds to cutting out the square into three thirds, but the general comparison of 

areas is not taken in account. 

In her research for a solution, STd started with working in a paper-and-pencil 

environment; she named x the length of the side of the small square and l the length of the 
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side of the initial one, calculated the two areas and solved the problem of their equality. 

Let us remark that she wrote, without justification, that the comparison of areas is solved 

with the help of the equality case. The comparison of areas was made with respect to the 

value l/√1.5. Then STd carried out the folding with her square: "I measured l (7,3cm), I 

did the calculation, which gave x=5.96". STd found that, visually, there seemed to be a 

little difference between the areas and she thought that it is due to an optical illusion. She 

then gave a construction of the folding with the help of the Geogebra software. STd 

regrets that this only provides an approximate value of the solution, like the ones 

obtained with a square of paper: measures and area calculations. 

Stages 2 and 3. Problems P2 (virtual) and P3 (real) 
STe proposed a statement of the virtual problem P2 identical to P1’s, but he fixed 

the side of the square to l=12 cm. The scenario he considered includes three steps: 

 an initiation, during about 20 min, in a session that involved an actual folding 

of a particular square, a statement of the problem and first attempts of 

solution; 

 a second stage, in the computer room, to determine an approximate solution 

with the help of Geogebra; 

 a last stage, working in pairs, aiming to justify the solution found with the 

help of a cutting out of the square (this last step being not explicit). 

He proposed a ‘dressing’ of the problem in order to make it more concrete for his 

students: a square field inherited by three brothers has to be divided between them. The 

eldest receives the total big square minus a small square (situated in ‘a corner’), this 

remaining  small square being shared between the two others. The question is: "do the 

three brothers have equitable parts?". This dressing, not taken up in problem P1, changes 
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significantly the problem because it turns it onto cutting the initial square into three 

polygons of equal areas. There is not folding anymore and nothing is said on how the 

small square is shared between the two younger brothers (nor even if it is equitable). 

The real problem P3 took up this idea of contextualisation, but remains closer to 

problem P1: a firm wants to make a logo defined by the folding of a square of side 12 cm 

and the constraint of equality of the two areas. STe also took up the idea of three phases, 

only slightly modified: 

1. a first activity, on paper, to understand the problem; 

2. a second activity, with Geogebra (construction and research are very guided), 

to find out an approximate value, which is quite suitable for the realization of 

the logo; 

3. here the justification was replaced by a actual construction of the logo on 

paper, using this approximate value (this third step was planned in the same 

session than point 2). 

The student teacher STd proposed a problem P2 taking up problem P1 and 

modifying the question in the same way as STe: "How has the black corner to be folded 

so that it has the same area than the white surface?" The possibilities for using calculator 

as well as the Geogebra software were mentioned (under the condition of not asking to 

draw the diagram, judged too complex for this level). In particular, STe planned to have 

the students work in groups of four in a computer room and let them choose their 

environment. 

The real problem P3, differs notably from P1 by the fact that one the interest is 

only in the equality (like P2) and especially the fact that an approximate value is 
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explicitly asked: "Determine as precisely as possible a folding of this type, so that the 

white part and the colourful part have the same area". The work was organised in groups 

of three students in the computer room, with a possibility to use Geogebra or only paper 

and pencil. Each group was provided a square of paper, the size of which was 3 cm, 4 cm, 

5 cm or 6 cm (STd explicitly adjusted this choice of the didactical variable: multiple of 3 

or not). 

4. Discussion 

4.1 About trajectories 

In this section we propose an original frame to organize and analyse the emerging 

trajectories to deal with the problem, like those which have been set out in section 3. The 

aim of this frame is to take into account various dimensions of a problem (institution and 

persons involved, goal(s) aimed at) and study the nature and the dynamics of the changes 

which take place through the successive ‘moves’ of this problem from one institution to 

another. 

At the start there is a problem, not necessarily mathematical, coming from an 

institution I, that may involve an everyday life or any domain of knowledge. Then there 

are several didactical institutions I1, I2,… in which successive alternative forms 

(‘avatars’) of the initial problem will show up. In each institution Ik (k ≥ 1) one or several 

individuals Tk  in a ‘teacher’ (or ‘educator’) position, as well as individuals Sk in a 

‘student’ (or ‘trainee’) position, will be distinguished. 

These institutions will be concatenated between them in the following way: the 

problem was introduced in Ik under the Pk avatar by Tk who poses it to the Sk with a given 

purpose. Then one of the Sks, who in institution is in a ‘teacher’ position (Tk+1 = Sk), 



  TME, vol10, nos.1&2, p .433 
 

 
 

poses the problem to his/her students Sk+1s under the avatar Pk+1, with a purpose which is 

generally different (figure 3). 

 
Figure 3.  Concatenation of institutions 

Of course this process can possibly be carried on from an institution to another 

(I1, I2,… , In), depending on the involved individuals. The succession of stages − and 

hence of avatars of the problem − constitutes the trajectory of the problem. 

Example (figure 4). 

Stage 1. In a training center for teachers (institution I1) a math educator finds a 

problem written in everyday language in a magazine. He/she thinks that it could well give 

rise to a geometrical activity for his/her trainees. Then he/she transforms it into a 

geometrical wording and, within the training curriculum, asks the trainees to search ‘all 

possible solutions’ of the problem, regardless to the classroom level. (mathematical a 

priori analysis). 

Stage 2. Again within the training curriculum (institution I2=I1), the teacher 

educator asks his/her trainees to transform the wording into a new one that could be 

posed as a research problem to a class of a given level (didactical a priori analysis). 

Stage 3. Back to his/her school (institution I3), each trainee undertakes posing the 

problem in his/her class. For that he/she transforms again the wording according to this 
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particular class and poses it by asking his/her students to use their knowledge to find a 

solution to the problem. 

Stage 4. Back to the training center (institution I4=I1), the educator asks the 

trainees, gathered in groups according to the level of their classes, to work out for that 

level a new formulation of the wording, in order to make it a research problem taking into 

account the implementation that they could observe in their own classes (a posteriori 

analysis). 

                           

                              
Figure 4 : Examples of trajectories of a problem 

 

The first three stages correspond to the example of training constituting the study 

of section 3: I1=I2 is the training center and I3 is one of the secondary school classes. 

Stage 4 could not be achieved during the training. It is nevertheless important, either 

being put into play in the training center or not, because it marks the start of a cycle of 

transformation of the problem taking into account the feedbacks from the students. This 

is a central component of the profession of teacher. 
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Moreover, one may quite consider conceiving trajectories in which other modes 

of transmission of problems intervene. For instance think of a continued training instead 

of an initial one or a debate between teachers of a same secondary school. 

4.2 On training 

During the first session dedicated to presentation of the problem P1, the teacher 

educator TEb made an unsuccessful attempt to orientate the trajectories by encouraging 

the teacher students to think about the use of spreadsheet in the class. However, as we 

saw it in the class of STd, sixth grade students could generate values tables close to what 

they could get faster with spreadsheet. We could observe the teachers’ difficulties to 

integrate spreadsheet in their actual practices despite an important focus during the 

training. It could suggest a training underperforming, but this opinion needs to be 

qualified because it seems that spreadsheet, according various studies, is a tool especially 

difficult to integrate into lessons by teachers. Indeed, Haspekian (2005) mentions some 

specific problems on spreadsheet instrumentation or teaching of particular notions related 

to spreadsheet (such as delicate and complex notion of cell) which do not exist or not 

under the same form in maths knowledge at this grade:  that can interfere negativity with 

the teaching of algebra. Teachers can be aware of these difficulties and avoid the use of 

spreadsheet in class despite the official demand from educative institution. The 

interpretation is confirmed by the experiment of TEa. One group of teacher students had 

to prepare a session using spreadsheet. Convinced of the impossibility of using 

spreadsheet in their own class, they prepared a session dedicated to the teaching of 

algorithms without any actual adaptation to the level of their students. They argued that 

the use of a spreadsheet needs too much time and knowledge which is not of 

mathematical nature.  
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Open problems and problem-situations with a-didactic potential are largely 

favored by the training in teacher training institution I1, especially  to encourage student 

teachers to not only ask problems with closed questions to their students. As the problems 

P3, posed in class, were generally open, we can conclude that prospective teachers were 

aware of this mathematics education complexity. This is perhaps due to the training based 

on homology that we gave to the students and which postulates that teachers students will 

reproduce the form of the teaching they received during their training in I1 .  

It should also be noted that the virtual problem P2 does not provide a lot of 

information on the actual course in class, except to check that changes of the 

mathematical support could only be possible in the class in front of school students (see 

STc). Even when student teachers know they will have to manage the problem with their 

students, the real constraints of the class do not seem to be taken into account before they 

are involved in real teaching scenarios with their own students. This leads to significant 

differences between laboratory work in I2 towards I3  and the actual work in I3 and could 

suggest that the training on problems prepared in I2  is not representative and far away 

from the reality of class teaching - even if this work remains interesting for training. That 

too should lead teachers educators to complete the training by requiring prospective 

teachers to engage into an actual implementation in a class with an a posteriori analysis. 

This demand can also show them that, first, it is possible to implement in I3 the 

requirement made in  I1 and, then, that the demand of the training institution is not 

opposite to the demand of school institution as some students think of it.  

4.3 On the choice of the specific technological context  

All prospective teachers have chosen to use Geogebra software to approach their 

problem research in response to the demand of using a technological context. This sole 
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choice of Geogebra could be explained by some factors. First, training in I2 favors this 

software which is widely used in French secondary school system. On other hand, 

Geogebra which is a multi-purpose software is well adapted to the problem:  P1 is 

generally seen as a geometrical problem and therefore the use of a dynamic geometry 

software is somehow natural, and for grade 10 the problem is also connected to functions 

as modeling tools and the use of Geogebra to make graphics is well suited. 

For the problem posed in class, three different environments are employed for 

solving it: a paper and pencil environment or Geogebra (STa, STd), only Geogebra (STb, 

STe) and no use of software (STc). Moreover, there are few mentions of the use of a 

calculator (STd is the unique teacher who speaks explicitly about it) while school 

students use it widely. Perhaps, this lack of allusion to calculator is due to the fact that 

teachers do not perceive it as a technological environment (despite the instructions see 

sec 3.1) and they think of a computer. It is also possible that its use is now considered 

transparent and routine for prospective teachers and they feel no need to mention it. 

4.4 On the folding 

All prospective teachers keep the idea of the folding to present the problem to 

their students. Probably this anchoring to the real world supports the devolution of the 

problem as the attitude of STe suggests it: he left aside the idea of folding in the virtual 

problem P2, but it takes again this idea when he poses the real problem P3 to his students 

in class. 

However, the folding is not easy to define as we can see it in I1 where the teacher 

educators had been obliged to mention other geometric terms than the area like square 

and diagonal and vertices.  The diagonal could be also drawn (an even marked by a fold 

as STe did it). Other ways are possible: STc pointed out the vertex to fold on the diagonal 
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by coloring the good corner to use; STd has not defined the folding with enough 

precision and students did not well understand the instructions so that STd added some 

comments during the session in class; STa and STb made an unequivocal coding of the 

figure (like in the Mexican task in sec. 2).  

4.5 On the problem 

It is indeed a problem with a high potential that can be addressed at all levels of 

secondary education. The student teachers have all agreed without hesitation to pose it 

with their own transformations to their classes and students and, according to their 

comments, the students were interested in solving the problem P3. 

Many adjustments were made especially concerning modalities of 

implementation. But despite the diversity of educational levels where the problem was 

given, the core of the mathematical problem stays stable with few changes. Among the 

changes, we can note essentially: the value of l (except for STa) and the research of the 

equality (except for student teachers teaching in grade 10, STa and STb). The biggest 

adjustment was made by STd, who introduced the concept of precision of the solution. 

By and large, the problem P1 did the job. 

We can conclude that the transformations of the problem P1 to give it in class are 

simultaneous oriented by the researches of the mathematical solution and by the official 

syllabus of the grades involved in the teaching.  It would be interesting to know what will 

be the use of the problem by the teachers some years later and how the trajectory of the 

problem continues evolving. We intend to make an interview with the prospective 

teachers involved in this study in the future. Another point of interest is the impact of 

such problems on school students and some material need to be used to precise this 

crucial point.  
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Abstract: Professional noticing of students’ mathematical thinking in problem solving 
involves the identification of noteworthy mathematical ideas of students’ mathematical 
thinking and its interpretation to make decisions in the teaching of mathematics. The goal 
of this study is to begin to characterize pre-service primary school teachers’ noticing of 
students’ mathematical thinking when students solve tasks that involve proportional and 
non-proportional reasoning. From the analysis of how pre-service primary school 
teachers notice students’ mathematical thinking, we have identified an initial framework 
with four levels of development. This framework indicates a possible trajectory in the 
development of primary teachers’ professional noticing.  
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INTRODUCTION 

Teachers and problem solving: the role of understanding the students’ 

mathematical thinking 

Solving problem is a relevant task in mathematics teaching. However, teachers 

need to understand the students’ thinking in order to manage problem solving situations 

in classroom. Teachers’ abilities to identify the mathematical key aspects in the students’ 

thinking during problem solving are important to performance teaching for 
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understanding. The development of these abilities to interpret students’ thinking may 

allow teachers to make appropriate instructional decisions, for instance, the selection and 

design of mathematical tasks in problem solving activities (Chamberlin, 2005).  

Although the analysis of students’ thinking is highlighted as one of the central 

tasks of mathematics teaching, identifying the mathematical ideas inherent in the 

strategies that a student used during the mathematical problem solving could be difficult 

for the teacher. However, teachers need to know how students understand the 

mathematical concepts in order to help them to improve their mathematical 

understanding (Schifter, 2001; Steinberg, Empson, & Carpenter, 2004). This approach is 

based on listening to and learning from students (Crespo, 2000) since, in this case, the 

teacher has to make decisions in which students’ thinking is central. 

Identifying the possible strategies used by students in problem solving allows 

teachers to interpret why a particular problem could be difficult and also to pose 

problems considering the characteristics of students’ thinking. On the other hand, if 

teachers understand the mathematical ideas associated with problems in each particular 

mathematical domain, they may be able to interpret the mathematical understanding of 

students appropriately. This knowledge could help teachers to know which characteristics 

make problems difficult for students and why (Franke & Kazemi, 2001). 

Considering these previous reflections about the relevant role of students’ 

thinking in mathematics teaching, an important goal in some mathematics teachers 

programs is the development of teachers’ ability to interpret students’ mathematical 

thinking (Eisenhart, Fisher, Schack, Tassel, & Thomas, 2010). Some mathematics teacher 

education programs have reported findings that support this approach but have also 
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reported that the development of this expertise is a challenge (Llinares & Krainer, 2006). 

The findings in these studies have pointed out that the more or less success of programs 

depends on how pre-service teachers understand the mathematical ideas in the 

mathematical problems and the students’ mathematical thinking activated in the problem 

solving activities (Norton, McCloskey, & Hudson, 2011; van Es & Sherin, 2002; Wallach 

& Even, 2005). 

  

Teachers’ professional noticing of students’ mathematical thinking 

Research on mathematics teacher development underlines the importance of the 

development of pre-service teachers’ professional noticing in the teaching of mathematics 

(Jacobs, Lamb, & Philipp, 2010; Mason, 2002; van Es & Sherin, 2002). Researchers and 

mathematics teacher educators consider the noticing construct as a way to understand 

how teachers make sense of complex situations in classrooms (Sherin, Jacobs, & Philipp, 

2010). Particularly, Mason (2002) introduces the idea of awareness to characterize the 

ability of noticing as a consequence of structuring the teacher’s attention about relevant 

teaching events. A particular focus implies the identification of key aspects of students’ 

mathematical thinking and its interpretation to make decisions in the teaching of 

mathematics (Jacobs et al., 2010). Previous researches have indicated the relevance of 

pre-service teachers’ interpretations of students’ mathematical thinking to determine the 

quality of the teaching of mathematics (Callejo, Valls, & Llinares, 2010; Chamberlin, 

2005; Crespo, 2000; Sherin, 2001). Therefore, the necessity that pre-service teachers base 

their decisions on students’ understandings underlines the importance to characterize and 

understand the development of this skill (Hiebert, Morris, Berk, & Jansen, 2007). This 

fact justifies the necessity to focus our attention on how pre-service teachers identify and 



  Fernández, Llinares & Valls 

 

interpret students’ mathematical thinking in different mathematical domains (Hines & 

McMahon, 2005; Lobato, Hawley, Druken, & Jacobson, 2011). 

Previous research on how students solve problems in specific mathematical 

domains has provided useful knowledge about the development of student’s 

mathematical thinking in these domains that could be used in the study of the 

development of the noticing skill. One of these mathematical domains is the transition 

from students’ additive to multiplicative thinking in the context of the proportional 

reasoning. Multiplicative structures in the domain of natural numbers that come from the 

expressions a × b = c, have some aspects in common with additive structures, such as the 

multiplication as a repeated addition, but also have their own specificity that is not 

reducible to additive aspects (Clark & Kamii, 1996; Lamon, 2007; Fernández & Llinares, 

2012-b). For example, tasks that involve the meaning of ratio such as: John has traveled 

by car 45 km in 38 minutes, how many km will he travel in 27 minutes? However, a 

characteristic of this transition is the difficulty that students of different ages (primary 

and secondary school students) encounter to differentiate multiplicative from additive 

situations. This difficulty is manifested in students who over-use incorrect additive 

methods on multiplicative situations (Hart, 1988; Misailidou & Williams, 2003; 

Tourniaire & Pulos, 1985), and who over-use incorrect multiplicative methods on 

additive situations (Fernández & Llinares, 2011; Fernández, Llinares, Van Dooren, De 

Bock, & Verschaffel, 2011-a, 2011-b; Van Dooren, De Bock, Janssens & Verschaffel, 

2008). These previous researches have provided results that underline key ideas in the 

transition from additive to multiplicative structures. These ideas have allowed us the 
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opportunity to design instruments to analyze pre-service teachers’ professional noticing 

of students’ mathematical thinking. 

The aim of this study is to characterize pre-service teachers’ noticing of students’ 

mathematical thinking in the domain of the transition from additive to multiplicative 

thinking, particularly, in the context of the proportional reasoning. Therefore, we are 

going to characterize how pre-service primary school teachers interpret students’ 

mathematical thinking when they are analyzing the student’s written work in 

mathematical tasks. Research questions are: 

 Which aspects of students’ mathematical thinking do pre-service teachers 

identify in multiplicative and additive situations?  

 How do pre-service teachers interpret the aspects of involved students’ 

mathematical thinking? 

When we tried to answer these two questions, an additional result emerged: a 

framework with different levels that describes pre-service primary school teachers’ 

noticing of students’ mathematical thinking in the domain of students’ transition from 

additive to multiplicative thinking in the context of proportional reasoning. In this sense, 

pre-service teachers’ interpretations of the student’s written work in the mathematical 

tasks help us to identify how they interpret the information about the way in which 

students have solved the problems. So, in this case, we hypothesized that students’ 

solutions to the problems could help pre-service teachers interpret how students are 

thinking about the given situations. 
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METHODS AND PROCEDURES 

Participants 

The participants in this study were 39 pre-service primary school teachers that 

were enrolled in the last semester of their training program. The three years of teacher 

education program offers a combination of university-based coursed and school-based 

practice. Pre-service teachers take foundational courses in education and method courses 

in different areas such as mathematics, language and social science, and a 12-week 

school teaching practicum. These pre-service teachers had still not made teaching 

practices at schools, but they had finished a mathematics method course in their first year 

of the training program (90 hours). This mathematics method course is focused on 

numerical sense, operations and modes of representation and, particularly, it has 

approximately 9 hours focused on the idea of ratio as an interpretation of rational 

numbers. We considered that characterizing pre-service teachers’ noticing of students’ 

mathematical thinking in problem solving could provide information about the 

development of pre-service teachers’ learning during the teaching practices. 

 

Instrument 

Pre-service teachers had to examine six students answers to four problems (Figure 

1), two proportional problems (modelled by the function f(x) = ax, a≠0) (problems 2 and 

4) and two non-proportional problems with an additive structure (modelled by the 

function f(x) = x+b, b≠0) (problems 1 and 3). Additive and proportional situations differ 

on the type of relationship between quantities. For example, in Peter and Tom’s problem 

(problem 1) the relationship between Peter’s and Tom’s number of boxes can be 

expressed through an addition: Tom’s laps = Peter’s laps + 60 (the difference between 
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quantities remains constant). On the other hand, in Rachel and John’s problem (problem 

2), the relationship between the number of flowers that Rachel and John have planted can 

be expressed through a multiplication: John plants 3 times more flowers than Rachel (60 

= 20 × 3). The first problem is an additive situation while the second situation is a 

proportional one. These differences among proportional and additive situations are 

considered in the problems with the sentences “they started together” or “Peter starter 

later/David started earlier” and “John plants faster/Laura pastes slower” or “they go 

equally fast”.  

The students’ answers show different correct strategies used in proportional 

situations (the use of internal ratios, the use of external ratios, the building-up strategy, 

the unit rate and the rule of three as correct strategies) but they were used incorrectly in 

the additive problems. On the other hand, the additive strategy was used as correct 

strategy in additive problems but as incorrect strategy in proportional ones. 

Pre-service teachers had to examine a total of 24 students’ answers (four problems 

× six students) and respond to the next three issues related to the relevant aspects of the 

professional noticing of students’ mathematical thinking skill (Jacobs et al., 2010): 

 “Please, describe in detail what you think each student did in response to each 

problem” (related to pre-service teachers’ expertise in attending to students’ 

strategies).  

 “Please, indicate what you learn about students’ understandings related to the 

comprehension of the different mathematic concepts implicated” (related to 

pre-service teachers’ expertise in interpreting students’ understanding).  
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 “If you were a teacher of these students, what would you do next?” (that is, 

documenting pre-service teachers’ expertise in deciding how to respond on the 

basis of students’ understandings). 

The six students’ answers to the four problems were selected taking into account 

previous research on proportional reasoning. We focus our attention on the research 

findings that describe different profiles of primary and secondary school students when 

they solve proportional and non-proportional problems (Fernández & Llinares, 2012-a; 

Van Dooren, De Bock & Verschaffel, 2010). These students’ profiles are:  

 students who solve proportional and additive problems proportionality, 

 students who solve proportional and additive problems additively, 

 students who solve both type of problems correctly, and  

 students who solve problems with integer ratios using proportionality 

(regardless the type of problem) and solve problems with non-integer ratios 

using additive strategies. 

So, four out of six students’ answers corresponded with one of these profiles and 

the other two students’ answers used methods without sense. These last two students’ 

answers were included as buffer answers. Furthermore, to avoid those results were 

affected by other specific variables of the test, problems and students’ answers order was 

varied. So, 20 different versions of the test were designed.  
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Figure 1. Problems and students’ answers used in the test 

Analysis 

Pre-service teachers’ answers were analyzed by three researchers. From a 

preliminary analysis of a sample of pre-service teachers’ answers, we generated an initial 
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set of rubrics to make visible aspects to characterize the professional noticing of students’ 

mathematical thinking in the context of proportional reasoning. These initial rubrics were 

refined as the analysis was progressing. Finally, we generated four-level descriptors 

which were applied to all pre-service teachers’ answers: 

    
 Level 1. Proportional from additive problems are not discriminated 

 Level 2. Discriminate proportional from additive problems without identifying 

the mathematical elements. 

 Level 3. Discriminate proportional from additive problems identifying the 

mathematical elements but without identifying students’ profiles. 

 Level 4. Discriminate proportional from additive problems identifying the 

mathematical elements and the students’ profiles. 

 
Therefore, firstly, we classified pre-service teachers in two groups: pre-service 

teachers who discriminated proportional and additive situations, and pre-service teachers 

who did not discriminate both situations. 

Secondly, focused on pre-service teachers who discriminated both situations, we 

analyzed if they discriminated the situations identifying the mathematical elements that 

characterize proportional and additive situations and if they were able to identify 

students’ profiles. This second stage of the analysis tried to identify the quality of pre-

service teachers’ interpretations considering whether they have used specific mathematics 

elements to justify their interpretations. To do this, we took into account the 

mathematical elements of proportional and additive situations (Table 1) and the strategies 

used by students (Table 2). So, we analyzed if pre-service teachers identified the 
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strategies and integrated the mathematical elements in their written text produced 

(relating the characteristics of the problem and the strategy) when they answered the task.  

We analyzed all pre-service teachers’ answers but three out of thirty-nine pre-

service teachers were not classified in one of these levels because their answers were 

incomplete. 

 
Table 1. Mathematical elements of the situations 

Proportional situation f(x) = ax, a ≠ 0 Additive situation f(x) = x + b, b ≠ 0 

The function passes through origin “they 
started together” 

The function does not pass though 
origin “they started later or earlier” 

The value of the slope changes “someone goes 
faster or slower” 

The value of the slope remains 
constant “They go equally fast” 

External ratios are constant (f(x)/x = a) and 
internal ratios are invariant (a/b = f(a)/f(b)) 

The difference between relationed 
quantities remains constant 

f(x)-x = b 

  
 
 
Table 2. Students’ strategies used to solve the problems 

Proportional situations Additive situations 

The use of external ratios

The use of internal ratios 

Unit-rate 

Building-up strategies 

Rule of three algorithm 

Additive strategy 
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Results 

In this section, we present the characterization of the different levels in the 

development of pre-service teachers’ noticing of students’ mathematical thinking skill in 

the mathematical domain of proportionality.  

Level 1. Proportional from additive problems are not discriminated (25 out of 39 

pre-service teachers). 

In this level we classified pre-service teachers who did not discriminate 

proportional from additive situations. These pre-service teachers considered 

 that all the problems were proportional (so proportional methods were the 

correct strategies to solve all these problems), or 

 that all the problems were additive (so additive methods were the correct 

strategies to solve all these problems). 

For example, a pre-service teacher gave the next argument in the answer of 

student 5 to problem 2 (proportional situation) (Figure 1): “This answer is correct. The 

student has found out by how much Rachel goes from 4 to 20 and repeated the process 

with John”. This pre-service teacher identified the multiplicative relationship between 

quantities used by the student 5 to solve the problem, but this pre-service teacher said in 

the answer of student 5 to problem 3 (additive situation): “This answer is correct. The 

student has found out the multiplicative relationship between 12 and 48 and then has 

multiplied 24 by this number”. In this case, the preservice teachers did not recognize the 

additive character of the situation.     

Another pre-service teacher gave the next argument to the answer of student 4 to 

problem 3 (additive situation): “The answer is correct. The student has obtained the 
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difference between the dolls manufactured by David and Ann. Afterwards, the student has 

added 48 that are the dolls manufactured by Ann later”. However, when this pre-service 

teacher interpreted the answer of student 5 to problem 2 (proportional situation), he did it 

erroneously “This student has used a correct method and has obtained a correct result. 

Firstly, the student has computed the difference between the flowers planted by John and 

Rachel and has obtained 8 flowers. After, taking into account this difference, the student 

has added this number (8 flowers) to the 20 flowers planted by Rachel obtaining how 

many flowers has John planted”. 

So, both pre-service teachers did not discriminate proportional from additive 

situations. Pre-service teachers in this level focus their attention on superficial features of 

the situations and show a lack of mathematical knowledge. As a consequence, their 

interpretations of students’ answers mainly rely on the description of the operations 

carried out and not on the meanings. 

 

Level 2. Discriminate proportional from additive problems without identifying the 

mathematical elements (2 out of 39 pre-service teachers). 

We classified in this level pre-service teachers who discriminated proportional 

from additive situations but did not justify the difference between problems taking into 

account the mathematical elements of the situations. Therefore, these pre-service teachers 

identified the correctness of the strategies used by students in each type of problem 

(relating the situation with the strategy used by the student) but without justifying why 

the strategy is correct or incorrect taking into account the characteristics of the situations.  
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For example, a pre-service teacher indicated in the answer of the student 1 to 

problem 1 (Figure 1): “The answer is correct. The student has determined how many 

boxes has Peter loaded, is that, the difference between the boxes loaded by Peter at the 

end (60 boxes) and the boxes loaded by Peter initially (40 boxes). So, this difference (20 

boxes) is also the number of boxes loaded by Tom. So, 100 + 20 = 120”.  

Pre-service teachers in this level only describe the operations carried out by 

students, but, in this case, the descriptions are related to the correctness of the strategy in 

each type of problem (subject matter knowledge). 

 

Level 3. Discriminate proportional from additive problems identifying the 

mathematical elements but without identifying students’ profiles (6 out of 39 pre-service 

teachers). 

In this level we classified pre-service teachers who discriminated proportional 

from additive situations justifying the difference between situations taking into account 

some mathematical elements of the situations. However, these pre-service teachers were 

not able to identify students’ profiles. 

For example, a pre-service teacher indicated in the answer of the student 1 to 

problem 1 (Figure 1): “The answer is correct. This student has computed the difference 

between the boxes loaded by Peter initially and later (20 boxes). As the problem said that 

the two people loaded equally fast but Peter started earlier, 20 are also the boxes loaded 

by Tom. So the student has added 20 boxes to the boxes loaded for Tom”. This pre-

service teacher justified the difference between situations with the mathematical elements 



  TME, vol10, nos.1&2, p .455 
 

 
 

of the situations, in that case, mentioning two characteristics of the additive situations: 

“They loaded equally fast but someone started earlier”. 

However, these pre-service teachers did not identify students’ profiles because 

they did not relate globally the behavior of each student to the four problems. For 

example, the pre-service teacher mentioned above identified the behavior of student 3 

(student who solve both type of problems correctly): “this student has solved all the 

problems correctly” but this pre-service teacher were not able to identify the behavior of 

student 4 (student who solve all the problems additively) since he said “this student has 

solved problems 1 and 3 (the same type) incorrectly and problems 2 and 4 (other type of 

problem) correctly” neither the behavior of student 5 (student who solve all the problems 

using proportionality)  “this student has solved problems 1 and 3 (the same type) 

incorrectly and problems 2 and 4 (other type of problem) correctly” because he/she did 

not identify that the student used the same strategy regardless the type of problem.  

 

Level 4. Pre-service teachers who discriminate proportional from additive 

problems identifying the mathematical elements of the situations and the students’ 

profiles (3 out of 39 pre-service teachers). 

In this level we classified pre-service teachers who discriminated proportional 

from additive problems justifying the difference between problems taking into account 

the mathematical elements of the situations and identifying the students’ profiles. 

For example, a pre-service teacher indicated in the answer of the student 1 to 

problem 1 (Figure 1): “The student has obtained the difference between the two Peter’s 

quantities and used it to obtain the number of boxes loaded by Tom. The answer is 
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correct because the two people loaded equally fast and the difference has to be the 

same”. 

This pre-service teacher was able to identify students’ profiles. In that way, this 

pre-service teacher indicated in relation to the answers of student 3 (student who solve all 

problems correctly) “this student know the correct methods and apply them in the both 

type of problems”, in relation to the answers of student 4 (student who solve all problems 

additively) “This student only do correctly the problems where the speed is the same but 

someone starts earlier or later. This student apply the same method to the both type of 

problems” and in relation to the answers of student 5 (student who solve all problems 

using proportionality) “this student only do correctly problems where the speed is not the 

same. This student always applies the same method to all the problems”. Pre-service 

teachers in this level are able to relate strategies within and across problems in order to 

see students’ overall performance to a certain type of problem focusing on a relation of 

relations. 

 

DISCUSSION  

Initially, the goal of this research was to characterize what pre-service teachers 

know about students’ mathematical thinking in the context of proportional and non-

proportional problem solving before their teaching practices. However, the design of the 

test allows us to characterize a trajectory of the development of teachers professional 

noticing of students’ mathematical thinking. In the identified trajectory, pre-service 

teachers moved from the non-recognition of the characteristics of the situations towards 

the identification of the characteristics of the situations and the strategies used by 

students and the recognition of students’ profiles when solving problems. This last level 
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shows pre-service teachers’ willingness and ability to analyze students’ mathematical 

thinking in relation to the additive and multiplicative situations.  

 

The development of a framework to characterize pre-service teachers professional 

noticing of students’ mathematical thinking 

Results show the difficulty of pre-service teachers to identify the relevant aspects 

of students’ mathematical thinking in relation to the students’ transition from additive to 

multiplicative thinking. This difficulty is manifested by pre-service teachers’ difficulty in 

differentiate proportional from non-proportional situations (25 out of 39). This finding 

indicates a weakness in their own subject-matter knowledge about multiplicative and 

additive situations. Identifying the mathematical elements of additive and multiplicative 

situations is the first step to interpret properly students’ mathematical thinking during the 

problem solving.  

On the other hand, although some pre-service teachers could recognize the 

difference between both situations, they had difficulties in justifying why students’ 

answers were or were not correct taking into account the mathematical elements of the 

situations. Furthermore, they had difficulties in interpreting globally all students’ 

answers. This result shows the complex knowledge that pre-service teachers have to use 

to identify and interpret the way in which students solve the problems. 

Another relevant result is the characterization of pre-service teachers’ 

development of professional noticing of students’ mathematical thinking. A framework 

consisted of four levels characterizing the development of this skill has been built. The 

transition from level 1 to 2 is determined when pre-service teachers are capable of 

analyzing the characteristics of situations to discriminate both types of problems. In level 
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2, pre-service teachers focus on the correctness of students’ answers and tend to accept 

students’ correct answers as evidence of understanding without making specific 

inferences about what or how students were or were not understand. The transition from 

level 2 to 3 is determined when pre-service teachers are capable to relate students’ 

strategies with the characteristics of the problems justifying through the mathematical 

elements if the strategy is correct or incorrect. That is to say, pre-service teachers look 

beyond the surface of the student’s answer. Finally, the transition from level 3 to 4 is 

determined when pre-service teachers are able to see student’s overall performance to a 

certain type of problem. That is to say, pre-service teachers are able to relate strategies 

within and across problems in order to see how those strategies are related to other 

groups of problems. In this case, pre-service teachers display a greater attention towards 

the meaning of students’ mathematical thinking rather than towards some surface 

features. Finally, the fact that some pre-service teacher focus on individual answers rather 

that characterizing the students’ profiles could be related with the design of the task. For 

further researches, it is necessary to formulate more specific questions that address pre-

service teachers to examine all the answers provided by each student to the four problems 

as a whole.  

The different levels identified and the transition between them show how pre-

service teachers professional noticing of students’ mathematical thinking is developed 

and therefore, it allows us to begin to understand pre-service teachers learning (Figure 2). 

The key elements in this framework are how pre-service teacher use the evidence 

(students actions/operations) to describe what or how the student is thinking, and how 

they generate an explanation of what the student knows or thinks providing or not 
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evidence to support the explanation. The characteristics of this framework are similar to 

rubrics in the description of how pre-service teacher build a model of student thinking in 

a context of prediction assessments (Norton et al., 2011).  

 

Figure 2. A framework to characterize pre-service teachers’ professional noticing of 
students’ mathematical thinking in the context of proportionality  

 

The different levels in the framework support the idea that the subject-matter 

knowledge is necessary for teaching, but it is not a sufficient condition because teachers 

need to interpret the students’ behavior in problem solving situations using their 

understanding of mathematical knowledge (Crespo, 2000). Constructing a model for 

learning to notice students’ thinking, such as the framework presented, implies to focus 

on the organized knowledge about problems and on the range of strategies used by 

students to solve the problems (Franke & Kazemi, 2001).  

In a previous research, van Es (2010) also provided a framework for learning to 

notice the student thinking articulating two central features of noticing: what teachers 

notice and how teachers notice. Van Es generated this framework using meetings with 
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seven elementary school teachers in which each teacher shared clips from his or her own 

classroom and discussed aspects of the lesson. Although van Es study and our research 

use different evidences and come from different contexts, it is possible to identify some 

features that provide insights about the noticing construct and its development. One of the 

relevant aspects showed in the two researches is how teachers or pre-service teachers go 

from a baseline to extent the noticing skill indicating how teachers/pre-service teachers 

go from noticing superficial aspects to consider the connections between different 

relevant aspects and meanings. However, there are also differences between the two 

frameworks: the role played by the mathematical content knowledge in the noticing skill 

and how it is integrated (as we have shown in the translation from one level to the next). 

This framework should be considered as an initial approach to the 

characterization of the development of noticing. However, it points out two additional 

aspects that we should be considered. Firstly, the emergence of this framework is linked 

to a specific type of problems. Therefore, it is necessary more researches using different 

types of problems to extend and to validate this framework and this approach. Secondly, 

in the context of mathematics teacher education programs we could complement the 

written test (the questionnaire) with students’ interviews.  

 

Teacher education, problem solving and the development of the teacher’s noticing 

skill 

A goal in mathematics teacher education is the development of pre-service 

teachers’ ability to model the student’s thinking and to use evidences from the students’ 

behavior when solving problems to construct this model (Norton et al., 2011). However, 

if pre-service teachers have a lack of content knowledge in solving the mathematical 
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tasks, they could have difficulties in building an appropriate model of the students’ 

mathematical thinking. This is the case of pre-service teachers who did not differentiate 

the additive and multiplicative relations in the situations proposed in our study. As a 

consequence, the first level in the development of teachers’ professional noticing of 

students’ mathematical thinking is defined by the understanding of the mathematical 

knowledge. So, an aspect of pre-service teacher’s content knowledge for teaching in the 

context of multiplicative and additive situations is related to the discrimination between 

proportional and non-proportional relationships. It is possible that the lack of knowledge 

that pre-service teachers have about proportionality may be due to the way in which 

proportionality is often taught at schools in which there is an over-use of missing-value 

problems and an overemphasis on routine solving processes (De Bock, Van Dooren, 

Janssens, & Verschaffel, 2007). 

Since the proportionality is more than a four-term relation, in order to pre-service 

teachers could develop a professional noticing, it is necessary that they extend their 

understanding and consider other features of proportionality such as straight line graphs 

passing through the origin and the constant slope of such graphs identified with the 

coefficient of proportionality when it is adopting a functional approach. The differences 

between proportional and non-proportional situations should be another feature. Whether 

a good problem solver in a given domain is one who knows the connections between the 

different mathematical parts, a teacher who wants to interpret the students’ mathematical 

thinking during a problem solving situation in the classroom also needs to know the 

mathematical structure of the domain. In this case a lack of pre-service teacher’s content 

knowledge could limit his/her ability to model the student thinking.  In this way, this 
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study examines pre-service teachers’ capacities needed to make sense students’ thinking 

about proportionality. 

If teacher education programs require pre-service teachers to notice students’ 

mathematical thinking in problem solving contexts then we should make an effort to 

document what is what prospective teachers notice in different mathematical domains 

and how the development of this skill could be characterized. Previous studies in initial 

mathematics teacher programs have reported improvements in noticing, going from a 

descriptive and evaluative noticing towards a more analytic and interpretative one 

(Crespo, 2000; Norton et al., 2011; van Es & Sherin, 2002). Furthermore, some studies 

underlined the benefits of teachers’ discussions about students’ written work. In a 

previous experience, seven prospective secondary school mathematics teachers solved the 

task proposed in this study and discussed it in an on-line debate (Fernández, Llinares, & 

Valls, 2012). Although, initially, prospective teachers had difficulties attending and 

interpreting the students’ mathematical thinking in the domain of multiplicative and 

additive structures, when prospective teachers with a lower level of noticing interacted 

with other with a higher level of noticing in an on-line discussion, they changed their 

interpretations to reach mutual understanding. This process led prospective teachers with 

a lower level of noticing to develop a new understanding of students’ mathematical 

thinking. From these preliminaries findings, we hypothesized that teachers could develop 

ways to elicit and listen to students’ mathematical thinking when they focus their 

discussion on the students’ written work. In this sense, focusing on students’ written 

work remains an instrument for relating mathematics knowledge and students’ 

mathematical thinking.  
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Our findings also provide additional information for the design of materials in teacher 

training programs that take into account the characteristics of pre-service teachers’ 

learning and their understanding of proportionality (Ben-Chaim, Keret, & Ilany, 2007). In 

this sense, the instrument used in this research could be adapted as teaching material to 

create opportunities for the learning of pre-service teachers. These opportunities of 

learning should be focused on the development of pre-service teachers’ skills to identify 

and interpret student’s written work. In fact, a characteristic of our research instrument is 

that it is based on the details of students thinking and it is elaborated from the research 

based on students’ understanding of additive and multiplicative structures (Fernández & 

Llinares, 2012-a; Van Dooren et al., 2010). So, firstly, pre-service teachers could solve 

the different problems and discuss on the possible different answers. Secondly, they 

could share the interpretations of students’ solutions to the problem discussing on the 

mathematical understanding of each strategy and how particular strategies were elicited. 
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Abstract: A framework for a problem-driven mathematics curriculum is proposed, 
grounded in the assumption that students learn mathematics while engaged in complex 
problem-solving activity. The framework is envisioned as a dynamic technologically-
driven multi-dimensional representation that can highlight the nature of the curriculum 
(e.g., revealing the relationship among modeling, conceptual, and procedural knowledge), 
can be used for programmatic, classroom and individual assessment, and can be easily 
revised to reflect ongoing changes in disciplinary knowledge development and important 
applications of mathematics. The discussion prompts ideas and questions for future 
development of the envisioned software needed to enact such a framework. 
 
Keywords: Problem-based Mathematics, Curriculum frameworks, Mathematical 
Modeling, Model-Eliciting Activities. 
 

 

Introduction 

Curriculum frameworks are commonly organized around categories of 

mathematical topics (e.g., number, geometry), such as in the new Common Core School 

Mathematics Standards (NGA & CCSSO, 2011) and the National Council of Teachers of 

Mathematics (NCTM) standards documents (1989, 2000) for the United States (U.S.). 

Oftentimes, to convey the nature of mathematics teaching and learning, the content topics 

are cross-referenced with other types of mathematical behaviors, such as the “process 

standards” (e.g., problem solving, reasoning and proof) of the NCTM documents, and the 

“practices” (e.g., model with mathematics, attend to precision) of the CCSSM document. 



  Zawojewski, Magiera & Lesh 

 

Another approach is to formulate mathematics curriculum frameworks based on 

assumptions about learning mathematics, such as the Dutch curriculum framework 

described by van den Heuvel-Panhuizen (2003) (e.g., informal to formal, situated to 

generalized, individual to social). The developers of mathematics curriculum frameworks 

choose their organization and structure in order to communicate a mathematics 

curriculum to broad audiences (e.g., teachers, administrators, parents, students). The 

choices for content and the representation of curricula made by the framework 

developers, in turn, convey a distinctive perspective on mathematics curriculum, 

accompanied by inevitable (some intended, some unintended) consequences when users 

of the framework transform the represented curriculum into prescriptions for classroom 

experiences and assessment. A proposal for framing and representing a problem-driven 

mathematics curriculum is described in this article. The proposal envisions a framework 

that grows out of Lesh and colleague’s work on models-and-modeling, which has focused 

on using modeling problems as sites for revealing and assessing students’ thinking (e.g., 

Lesh, Cramer, Doerr, Post & Zawojewski, 2003), and more recently by Richard Lesh to 

teach data modeling (personal conversation, Dec. 21, 2012). The proposal also envisions 

a representational system that builds on a one originally posed by Lesh, Lamon, Gong 

and Post (1992), and is particularly poignant today because technology is now available 

that could carry out the proposal. 

 

Why an Alternative Framework? 

Assumptions about Curriculum Frameworks 



  TME, vol10, nos.1&2, p .471 
 

 
 

Curriculum frameworks convey a view of mathematics learning to stake holders 

in education, influencing the full range of mathematics education activity—from 

implementation to assessment. For example, the two foundational NCTM curriculum 

documents (1989, 2000) contributed to a huge shift in views of mathematics curriculum 

in the U. S. Prior to the publication of these documents, schools, districts and state 

curriculum guides predominantly listed expected mathematical competencies by grade 

level, commonly referred to as scope and sequence documents. The NCTM standards 

documents introduced a process dimension (problem solving, reasoning, connections, 

communication) in addition to the common practice of describing mathematics 

competencies and performance expectations. Further, discussions about the mathematical 

processes and expected mathematical performances were embedded in the context of 

illustrative problems, teaching and learning scenarios, and ways of thinking about 

mathematics. These standards documents impacted not only state curriculum standards, 

but also resulted in the development of the now-famous NSF curricula (described in 

Hirsch, 2007a). Research on the standard-based curricula suggests that students using 

these curricula demonstrate enhanced learning of mathematical reasoning and problem 

solving (Hirsch, 2007b).  

The new Common Core State Standards in Mathematics (NGA & CCSSO, 2011), 

adopted by 45 of the United States and 3 territories, lists mathematical learning 

objectives, or standards, organized by grade level, and is accompanied by a completely 

separate discussion of eight mathematical practices. There is no discussion in the 

document to help the practitioner envision what the implementation of the intended 

curriculum will look like—leaving the accomplished curriculum more dependent on 
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professional development and local school culture to fill in the picture. One advantage to 

the separation of mathematics competencies from the mathematical practices may be to 

avoid representing the mathematics curriculum as an array, which can inadvertently 

convey a view of mathematics curriculum as disaggregated into bits and pieces 

represented by each cell.  

Consider, for example, the Surveys of Enacted Curriculum (SEC) (Porter, 2002), 

which are intended to drive assessment of student performance. The SEC is organized in 

a two-dimensional framework of cognitive demand (memorize, perform procedures, 

demonstrate understanding, conjecture/generalize/prove, and solve non-routine problems) 

vs. disciplinary topics (e.g., functions, data analysis, rational expressions). It divides the 

(K-12) mathematics topics dimension into 19 general categories, each of which is then 

divided into 4 to 19 smaller mathematical topics. “Thus, for mathematics, there are 1,085 

distinct types of content contained in categories represented by the cells” (Porter, 

McMaken, Hwant, & Yang, 2011, p. 104). Porter’s fine-grained representation of 

curriculum is intended to ensure coverage of mathematical topics and types of cognitive 

demand while minimizing gaps and overlaps. However, such a representation may lead to 

an enacted curriculum prescribed by the “pieces” (i.e., the cells), and if educators are 

prompted to “teach to the test” an unintended emphasis on disconnected mathematics 

education may result. Further, once a framework like this is codified by formal external 

assessments, the mathematics content becomes more difficult to revise in response to the 

needs of evolving fields of science, engineering and technology.  

An alternative may be found in the Dutch mathematics curriculum, rooted in 

Realistic Mathematics Education (RME) learning theory, initially developed by the well-
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respected Dutch mathematics educator, Freudenthal (1991), and continued at the 

Freudenthal institute today. The work in RME portrays a vision of mathematics as a 

human activity that combines learning and problem solving as a simultaneous activity. 

Smith & Smith (2007) describe the three dimensions around which the RME-based 

mathematics curriculum framework is organized: informal to formal; situated to 

generalized; and individual to social. In practice, RME emphasizes curriculum designed 

to encourage students’ development via progressive mathematization. van den Heuvel-

Panhuizen (2003) describes progressive mathematization as the growth of an individual’s 

mathematical knowledge from informal and connected to the local context, to an 

increasing understanding of solutions designed to reach some level of schematization 

(making shortcuts, discovering connections between concepts and strategies, making use 

of these new findings in a new way), and finally to an increasing understanding of formal 

mathematical systems.   

The work on such progressive mathematization is growing (e.g., hypothetical 

learning trajectories as described by Clements & Sarama, 2004a; 2004b). But, questions 

have been raised by Lesh and Doerr (in press): Do all students optimally learn along a 

particular normalized path (learning line, learning trajectory)?  Do all students learn the 

“end product” in the same way? Likely not. Rather than describing a particular learning 

objective or standard as a goal for learning, they use Vygotsky’s (1978) “zone of 

proximal development” to describe particular goals for students’ learning as regions 

around those goals that are individualistic and dependent on a variety of interacting 

factors. Such might include the scaffolding provided by the teacher, the language that the 

student has and the teacher uses, and the technology or manipulatives that may or may 
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not be available during the learning episode. Further, Lesh and Doerr, using Piaget’s 

(1928, 1950) notion of decalage, describe how apparent learning of an objective may 

mask the partial development of an idea when “operational thinking” for one concept 

may occur years earlier or later than comparable levels of “operational thinking” for 

another closely related concept (Lesh & Sriraman, 2005). Lesh and Doerr emphasize that 

individuals learn in different ways and develop their understandings along different paths. 

They argue that intended “final products” (i.e., identified as standards or learning 

objectives) are likely to be in intermediate stages of development in most students, and 

open to revision and modification as they encounter new situations for which they need to 

form a mathematical interpretation.   

Assumptions about Mathematics Learning 

Lesh and Zawojewski (2007) refer to the work of various theorists and researchers 

(e.g., Lester & Charles, 2003; Lester & Kehle, 2003; Schoen & Charles, 2003; Silver, 

1985; Stein, Boaler, & Silver, 2003) to establish a close relationship between the 

development of mathematical understandings and mathematical problem-solving. Their 

perspective on learning “treats problem solving as important to developing an 

understanding of any given mathematical concept or process . . . . [and]. . . the study of 

problem solving needs to happen in the context of learning mathematics . . .” (p. 765). In 

particular, Lesh and Harel (2003), and Lesh and Zawojewski’s (1992) description of 

“local concept development” highlight the simultaneous increase in an understanding of a 

specific problem situation and the development of one’s mathematization of the problem. 

“[S]tudents begin these type of learning/problem-solving experiences by developing 

[local] conceptual systems (i.e., models) for making sense of real-life situations where it 
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is necessary to create, revise or adapt a mathematical way of thinking” (Lesh & 

Zawojewski, 2007, p 783).  

What is meant by local concept development and learning? Consider the Grant 

Elementary School Reading Certificate activity described in Figure 1, in which students 

are asked to create a set of “rules for awarding certificates” (i.e., a decision model). As 

described in Figure 1, the students generate a variety of models as an answer to this 

problem, and their answers provide windows to their mathematical thinking and 

learning—their local concept development.  

Grant Elementary School Reading Certificates Problem1 

In this activity, third grade students are asked to create and apply a set of decision rules for 
awarding certificates to readers who read a lot and who read challenging books. The students 
are given sample sets of individual reader’s accomplishments, each presented in a table 
including the title of each book read, the number of pages for each book, and the difficulty 
level of the book (labeled as easy, medium, hard). The tension between the two criteria for 
earning a certificate (reading a lot of books and reading challenging material) was intentional, 
in order to enhance the potential for various reasonable models to be developed.  

Summary of Group #1 Response:  
 Students should read either 10 books, or more than 1000 pages. 
 At least 2 of the books read should be hard books. 

 
This group clearly communicates the decision rules (i.e., model) and takes into account both 
required conditions: reading many books, and reading challenging books. Readers can readily 
apply the rules to the given data sets. For example, in one data set, the reader had read 5 books 
(two of which were hard), and a total of 722 pages. Given the clarity of the decision rules, a 
reader can figure what he or she needs to do to earn a certificate. In this illustrative case, one 
way for the reader to earn a certificate is to read 5 more books (even if they are all easy). 
Another way is to pick one long book that has at least 279 pages.  
 
Summary of Group #2 Response: 

 A student gets 1 point per page for easy-to-read books. 
 A student gets 2 points per page for hard-to-read books. 
 A student has to earn 1000 points to get a reading certificate. 

 
This set of decision rules is clearly communicated, and a reader could easily apply the decision 
rules and self-assess. However, a reader could earn a reading certificate award by reading only 
easy books, not meeting the criteria that readers must read both hard and easy books. 
Therefore, the set of rules does not meet the requirements for a “good” set of rules.  

Figure 1. Two Illustrations of Local Concept Development 
                                                 
1 This activity, in full, can be found in Yeatts, C. L., Battista, M. T., Mayberry, S., 
Thompson, D., & Zawojewski, J. S. (2004). Navigating through problem solving and 
reasoning in grade 3. Reston, VA: National Council of Teachers of Mathematics. 
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The mathematical goals of the activity are three-fold. First, each group of problem 

solvers is expected to generate a mathematical model, meaning they must develop a 

procedure or algorithm that meets the criteria given—that those earning a certificate must 

read a lot of books and read challenging books. In the generation of a model, many 

students engage in other types of mathematical knowledge development, such as 

quantifying qualitative information and differentially weighing and/or rank ordering 

factors. Each of the two responses described in Figure 1 represents different locally 

developed concepts, which are represented in the groups’ model (i.e., a set of rules). Note 

that the first response meets the criteria, whereas the second does not. Note, also, how in 

each case, the model developed is situated in the context of the problem, and is also 

dependent on the knowledge that individuals bring to the group—about mathematics, 

about reading programs, about meaning of “challenging books” and meaning of “reading 

a lot.” A second goal is for students to practice basic skills, such as recognizing the need 

for and carrying out calculations, and comparing and ordering numbers. These take place 

as the students test their proposed models, and in the full activity, students are given 

further sets of data to conduct additional tests of the model they have generated. A third 

area of learning is generalization, which is driven by the design of the problem. In 

particular, a good response to this problem is one in which the model produced is re-

usable (reliably produces the same results for a given set of data), share-able (the decision 

rules are clearly and precisely communicated to all of the students, the teachers, and the 

parents, resulting in reliable application of the model across users), and modifiable 

(rationales and assumptions on which the model is built are articulated so others can 

make intelligent adjustments for new situations). Without assumptions or rationales 
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explained, intelligent modification of models can be quite difficult, if not impossible. 

Notice that neither of the two sample responses in Figure 1 meets the modifiability 

criteria for generalization, but they have addressed the re-usability and the share-ability 

criteria for generalization. 

Over the years, Lesh and colleagues have reported on the local concepts 

developed by small groups of students as they engage in various problems, such as the 

one described in Figure 1. They indicate that individual students often pose initially 

primitive solutions, and as a result of social interactions, challenges, testing and revision, 

their initial solutions typically move toward a consensus model that is more stable. The 

learning of mathematics is described as an iterative process of expressing, testing and 

revising one’s conceptual model. In particular, by using mathematical modeling as a way 

to think about mathematics learning, Lesh and Doerr (2003) describe a move away from 

behaviorist views on mathematics learning based on industrial age hardware metaphors in 

which the whole is viewed simply as a sum of the parts and involving simple causal 

relationships. Their perspective on mathematics learning also moves beyond software-

based information processing metaphors, which involve layers of recursive interactions 

leading at times to emergent phenomena at higher levels that are not directly derived 

from the characteristics of lower levels. Instead, they align their models-and-modeling 

perspective on mathematics learning with a biology-based “wetware” metaphor, in which 

“neurochemical interactions . . . involv[e] logics that are ‘fuzzy,’ partially redundant, and 

partly inconsistent and unstable” (Zawojewski, Hjalmarson, Bowman, & Lesh, 2008, p. 

4). Assumed is that students arrive to school with dynamic mathematical conceptual 

systems already in place, that these conceptual systems are active and evolving before, 
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during and after problem solving and learning episodes, and that students must be 

motivated to engage in experiences by intellectual need (Harel, 2007) in order to learn. 

Thus, even when two students in a group may appear to have the same end product 

knowledge on one task, changing the task slightly, but keeping it mathematically 

isomorphic with the original, often reveals that the two students are thinking about the 

intended mathematical ideas in significantly different ways (Lesh, Behr, & Post, 1987; 

Lesh, Landau, & Hamilton, 1983). 

What is the role of the small group in learning? Social aspects of acquiring 

knowledge from communities have been characterized in society over the decades (e.g., 

Mead, 1962, 1977, Thayer, 1982), and more recent work describes learning in 

communities of practice in various trades and occupations (Greeno, 2003; Boaler, 2000; 

Wenger & Snyder, 2000; Lave & Wenger, 1991; Wenger, 1998). These situations of 

social learning are characterized by the presence of a teacher, tutor, or mentor who 

models, teaches and collaborates with novices while engaged in the specific context of 

practice, rather than in a classroom. Other social aspects of learning have also been 

documented in situations where there is no teacher/tutor/mentor available. For example, 

researchers have documented successful collaborations among groups of diverse experts, 

where any needed leadership emerges flexibly from within the group in response to 

emerging challenges and opportunities (Cook & Yanow, 1993; Wenger, 2000; Wenger & 

Snyder, 2000; Yanow, 2000). Both perspectives on social aspects of learning are based 

on the assumption that all members of a group bring some understanding to the table, that 

the knowledge each brings is idiosyncratic, that the knowledge elicited by the problem is 

specific to the context, and that local concept development takes place among the group 
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members while simultaneously each individual in the group is adapting and modifying 

one’s own understanding.  

Social aspects of problem solving and learning are also related to the development 

of representational fluency, because interactions among collaborators require 

representations be used to communicate. When presenting initial solution ideas to peers, a 

problem solver typically describes one’s own model using spoken words, written 

narratives, diagrams, graphs, dynamic action (e.g., gestures or using geometric software), 

tables, and other representations. The interpreting peer, who works to make sense of these 

representations, may request clarification, an additional explanation, or may point out 

inconsistencies, misrepresentations or other flaws. The peers, thus, iteratively negotiate a 

consensus meaning. Lesh and Zawojewski (2007) describe various social mechanisms 

that can elicit the use of representations, leading to the development of representational 

fluency, including: problem solvers making explanations to each other; groups or 

individuals keeping track of ideas they have tried; problem solvers making quick 

reference notes for new ideas to try as they continue in a current line of thinking; and 

problem solvers documenting their current line of reasoning when they must temporarily 

disrupt the work. These types of mechanisms, based largely on communication with 

others and oneself, provide the need to generate and use representations, and develop 

representational fluency. 

Toward an Alternative Framework 

Given the assumptions about learning grounded in problem solving, a number of 

challenges face the development of a framework for a problem-driven mathematics 

curriculum. How can a curriculum framework feature problem-solving activity as the 
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center of learning, while national and state standards documents highlight specific 

mathematical content as the central feature? How can a curriculum framework 

accommodate both the multi-topic nature of realistic mathematics problems and the pure 

mathematical nature of other mathematics investigations? How can a framework be 

represented to convey the complexities implied by the previous questions, yet be practical 

in meeting practical classroom needs? How can a framework be represented to inform the 

static nature of various standards documents, while also being responsive to changing 

societal needs and demands? 

 

Envisioning a Curriculum Framework and It’s Representation 

What is Meant by a Problem-Driven Framework?  

The development of problem-driven mathematics text series gained momentum in 

the U.S. in response to the 1989 NCTM Curriculum and Evaluation Standards for School 

Mathematics. In general, the NSF-funded texts (described in Hirsch, 2007a) are 

comprised of units of study organized around applied problems or mathematical themes. 

In many cases, these curricula use mathematical problems to launch and motivate 

learning sequences that progress toward development of understanding and proficiency 

for specified mathematical goals. For example, two of the design principles for 

developing the Mathematics in Context text series, which is based on the Dutch RME, are 

that the starting point of any instructional sequences “should involve situations that are 

experientially real to students” and “should . . . be justifiable by the potential end point of 

a learning sequence” (Web & Meyer, 2007, p. 82). The commitment to an experiential 

basis reflects the commitment to problem-solving as a means to learning, while the well-
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defined mathematical end points correspond to a commitment to a curriculum framework 

organized around specific mathematical standards or learning objectives. In contrast, the 

problem-driven curriculum, Mathematics: Modeling Our World, described by Garfunkel 

(2007), is characterized by using mathematical models as end points. The dilemma for 

the Mathematics: Modeling Our World development team was coordinating the 

mathematics content naturally emerging from their model-based problem-driven 

curriculum with a standard mathematics topic driven curriculum framework. Garfunkel 

describes how the team grappled with the need to “cover” the scope and sequence of the 

required curriculum:  

“[W]e believed (and still believe) that if we could not find, for a particular 
mathematics topic, a real problem to be modeled, that that topic would not 
be included in our curriculum.. . . Instead of ‘strands’ as they are usually 
defined we chose to organize curriculum around modeling themes such as 
Risk, Fairness, Optimization. We made an explicit decision . . .  not to 
create a grid with boxes for mathematical and application topics. Instead, 
within the themes we chose areas and problems that we believed would 
carry a good deal of the secondary school curriculum.  . . . For example, it 
was decided that one of the major mathematical themes of Course 1 was to 
be Linearity, so that each of the units in the course had to carry material 
leading to a deepening understanding not only of linear functions and 
equations, but also of the underlying concept of linearity.” (pp.161-162).  
 

Garfunkel’s dilemma illuminates a fundamental mismatch between a curriculum 

framework that identifies a list of specific mathematical learning objectives or standards 

as outcomes, and the development of a curriculum framework driven by problem solving, 

and in particular, modeling. The “coverage” issue seems to force the enacted problem-

driven curriculum to be a mix of problem-driven units accompanied by a collection of 

gap fillers to address missed content objectives. Thus, while Mathematics: Modeling Our 

World began the journey toward a problem-driven curriculum, it was challenged by the 
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coverage constraint, speaking to the question about what content should be included in a 

mathematics curriculum framework.  

As a result, questions are raised about envisioning a problem-driven curriculum 

framework. Should a problem-driven curriculum framework have as final goals students’ 

deep understanding of mathematical ideas that support certain types of problems, models 

or themes, or to demonstrate abilities about certain big mathematical ideas that were 

initiated in problem-solving settings? If the goal of a problem-driven curriculum is to 

cover certain mathematical models or themes, should the designers of a curriculum cover 

only those areas that naturally emerge in modeling or problem-solving work? If, on the 

other hand, the goal of a problem-driven curriculum framework is to accomplish certain 

big mathematical ideas, is the power of learning those ideas through problem solving to 

some extent defeated? 

What is the Nature of Mathematics Content in a Problem-Driven Framework? 

This larger question raises at least three issues about what mathematics to include 

in a problem-driven framework: What type of problems will the curriculum framework 

accommodate? What are the boundaries on the mathematics content to be covered? And 

how does the curricular framework adapt to evolving societal, scientific and 

technological needs concerning what mathematics is important?  

A problem-driven curriculum framework would need to incorporate pure 

mathematical investigations, real-world applications, and modeling problems, among 

others. Whereas some problems nicely map onto a single mathematical big idea, others, 

especially applied and modeling problems emphasize multiple mathematical big ideas—
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adding to the complexity of developing such a framework. Consider, for example, the 

Aluminum Crystal Size2 MEA, included in Figure 2, as an illustration. 

Aluminum Crystal Size Problem Description 

The activity is situated in the context of the manufacture of softball bats that would resist denting, but also 
won’t break. In materials science, one learns that the larger the typical size of crystals in a metal, the more 
prone to bending, and the smaller the typical size the more brittle the metal. A problem was posed that had 
two purposes. The first was to motivate the problem solver to quantify crystal size. The second was to 
establish a context where a client needs a procedure to quantifying crystal size as part of their quality 
control. The client in the problem “hires” the problem solver to create a way to measure, or quantify, 
aluminum crystal size using two-dimensional images, such as the ones here: 

 

 

 

 
 
 
 
 
The images are given in different scales, making visual comparison of crystals in the three samples 
difficult. Therefore, the mathematical procedure would need to take scale into account.  
 
A number of different approaches typically emerge, including:  

 Draw a rectangular region to designate a sample within each image. Calculate the area of the 
rectangle in which the crystals are enclosed. Count the number of crystals in a rectangle drawn. 
Compute the average area per crystal. Compare samples.  

 Select a sample of crystals within each image and estimate the area of each crystal (e.g., by 
measuring the distance across the widest part of a crystal, and the length of the distance 
perpendicular to that widest part, and then finding the product of those lengths). Compute the 
average area per crystal. Compare samples. 

 
Figure 2. Aluminum Crystal Size Problem 

In the Aluminum Crystal Size Problem, multiple big ideas in mathematics are 

relevant to producing a good solution. Spatial reasoning is important as the problem 

solver needs to figure out ways to quantify regions that are not consistently shaped nor 

consistently sized, yet must be considered collectively as a “class” tending toward a 

                                                 
2 For the full activity, see: Diefes-Dux, H. A., Bowman, K. J., Zawojewski, J. & 
Hjalmarson, M. (2006). Quantifying aluminum crystal size part 1: The model-eliciting 
activity. Journal of STEM Education and Research (7) 1&2, 51-63. 
Hjalmarson, M., Diefes-Dux, H. A., Bowman, K. J. & Zawojewski, J. S. (2006). 
Quantifying aluminum crystal size part 2: The Model-Development Sequence.  Journal 
of STEM Education and Research h (7) 1&2, 64-73. 
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certain size. The problem solver must also consider what parts of the regions to use in the 

quantification. Measurement is another big idea addressed, since a definition of crystal 

size needs to be generated and mathematized. Proportional reasoning is needed because 

the micrographs are all shown to different scales, which needs to be accounted for in the 

development of the mathematical model for crystal size. Sampling is important when 

deciding what regions of the micrograph to use to determine the size of the crystals in the 

full image; a good solution will incorporate a method for selecting samples to include in 

the mathematical model. Measures of centrality are likely to emerge because quantifiable 

characteristics of the various crystals need to be summarized in some way to come up 

with a single measurement of crystal size. Finally, mathematical modeling is the 

centerpiece of the activity. If the Aluminum Crystal Size activity is used as the 

centerpiece of a unit of study, the problem context drives what mathematical topics are 

encountered. A framework, then, is needed to help make decisions about which topics to 

investigate more deeply, whether to stay within the problem context in those 

investigations, and whether or when to incorporate other more conventional lessons or 

purely mathematical investigations on the conventional topics.  

The second consideration concerns the boundaries of mathematics curricular 

topics. For example, an economics problem may require designing a mathematical model 

that optimizes costs while producing the highest quality possible. An engineering 

problem may have ethical ramifications, where the “best” possible mathematical solution 

to attain cost-effectiveness may not meet equity considerations. A problem may lend 

itself to an elegant mathematical solution that uses cutting-edge technology, but the 

solution may not work with the commonly available technology. In the real world, when 
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clients want quantitative-based solutions that are cost-effective yet most powerful, 

thoroughly but quickly produced, and usable by a wide audience yet secure from abusers, 

the mathematical and non-mathematical considerations are inseparable. A collaboration 

of engineering educators have grappled with such an issue in the context of engineering 

education, where the goal has been to teach foundational engineering principles through 

mathematical modeling problems that carry competing constraints when considering 

ethical components (e.g., Yildirim, Shuman, Besterfield-Sacre, 2010).  

The content of mathematics curriculum needs to be an entity that can evolve, and 

can be flexible and nimble as problems faced in the workplace and society evolve—the 

third consideration. To illustrate, two hundred years ago the computational algorithms 

needed for bookkeeper’s math were appropriately the main focus of school mathematics 

content. Now-a-days, research on current professional use of mathematics in fields such 

as engineering (e.g., Ginsburg, 2003, 2006), health sciences (Hoyles, Noss, & Pozi, 2001; 

Noss, Holyes & Pozi, 2002) and finance (Noss & Hoyles, 1996) reports an increasing 

need for students to develop or adapt mathematical models to solve novel problems and 

to flexibly interpret and generate representations. Zawojewski, Hjalmarson, Bowman, & 

Lesh (2008) indicate that “the real world uses of mathematics are described [in the 

studies referenced above] as often requiring that mathematical knowledge be created or 

reconstituted for the local [problem] situation and that content knowledge be integrated 

across various mathematics topics and across disciplines” (p. 3).  
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A Proposal for an Alternative Problem-Driven Curriculum Framework 

Major dilemmas of constructing on over-arching curriculum framework were 

illuminated using the two problem driven curriculum frameworks described above. But, 

even when considered together, the RME and Mathematics: Modeling Our World do not 

necessarily accommodate all aspects of important mathematics to be learned. In 

particular, the RME framework is driven by problem-solving launches followed by a 

sequence of activities and instruction that lead to an increased understanding of formal 

mathematical systems. Garfunkel’s Mathematics: Modeling Our World is organized 

around themes such as risk, fairness, optimization and linearity, each representing 

important areas of mathematics associated with formal mathematical modeling. Both 

generally aim toward formal mathematical goals, but do not have as end goals 

mathematics deeply embedded within broad contextual situations and areas such as ethics 

or equity. The alternative proposed here is based on a notion of model-development 

sequences that broadens the one described by Lesh, Cramer, Doerr, Post, & Zawojewski 

(2003). Like RME and Garfunkels’ curricula’s development, the underlying assumption 

is that powerful learning of mathematics emerges from students’ mathematization of 

problematic situations. Going beyond RME and Garfunkel, a problem-driven 

mathematics curriculum framework built around model-development sequences has the 

potential to incorporate both formal mathematical big ideas/models and real world messy 

models that are intertwined with non-mathematical constraints.  

Lesh, Cramer et al. (2003) describe model-development sequences as beginning 

with model-eliciting activities (MEAs), which are instantiated in the two problems 

presented so far (Figures 1 & 2). The main characteristic of a MEA is that the problem 
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requires students to create a mathematical model in response to the task posed, which 

could be extended to the production of smaller parts of formal mathematical systems. 

MEAs have traditionally been designed using six specific design principles (Lesh, 

Hoover, Hole, Kelly, & Post, 2000) to devise “authentic” contexts, involving a client with 

a specified need for a mathematical model that facilitates making a decision, making a 

prediction, or explaining a reoccurring type of event in a system. Following the initial 

MEA are planned model-exploration activities (MXAs), which vary from comparing and 

contrasting trial models posed by peers in a class, to more conventional meaning-based 

instruction on various mathematical aspects of the model. For example, the Aluminum 

Crystal Size problem may be followed up with a lesson on the role and power of random 

sampling for making inferences, or an opportunity for students to compare and contrast 

their procedures for determining typical crystal size in micrograph samples. Similarly, 

one of the authors interviewed a teacher who enacted an MXA activity with her third 

grade students who had completed the Grant Avenue Reading Certificate Problem 

(Figure 1). After the teacher asked the third grade students to present their rules to each 

other, she asked students to identify similarities and differences among the sets of rules, 

and probed students perceptions of the pros and cons. By asking questions about what 

aspects of the situation each set of rules attended to and ignored, and how the choice of 

variables influenced the impacts the outcomes, she was teaching foundational ideas of 

modeling. For example, Group 2’s response (Figure 1) ignores the number of books in 

the data—depending only on the number of pages to represent “reading a lot.” Group 1 

(Figure1), on the other hand, used all three types of data (number of pages, number of 

books and the rating of easy/medium/hard). Even though Group 2’s response did not fully 
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meet the criteria articulated in the problem, the use of page numbers only, and not the 

number of books, is defendable as an indicator of amount of reading. Helping the 

students articulate rationales for their decisions supports the development of an initial 

understanding that models are systems that represent larger systems, and inevitably 

capture some features of the original system, while ignoring other aspects.  

A model-development sequence closes with a model-adaptation or model-

application activity (MAA). To illustrate the power of a MAA, consider the full sequence 

of activities that has been used in the first-year engineering course (with students fresh 

out of high school) at Purdue University3. The opening Nano Roughness4 MEA, (see 

Figure 3) is “set in the context of manufacturing hip-joint replacements where the 

roughness of the surface determines how well the joint replacement moves and wears 

within the hip socket” (Hjalmarson, et al., p. 41). Given digital images of the molecular 

surface of different samples of metal, students were asked to create a procedure for 

quantifying the roughness of each sample, which resulted in a variety of models. The 

subsequent MXA introduced students to a conventional engineering model for 

quantifying roughness, the average maximum profile (AMP) method, and then asked 

them to compare their model for quantifying roughness to the conventional engineering 

model. The goal for this MXA was to enable students to identify and understand trade-

                                                 
3 Purdue’s first-year engineering program has been using MEAs and model-development 
sequences for the past 9 years with approximately1500 student per year in West 
Lafayette, Indiana, USA (Hjalmarson, Diefes-Dux & Moore, 2008). 
4 The full activity can be found in J. S. Zawojewski, H. A. Diefes-Dux, & K. J. Bowman 
(Eds.), (2008). Models and modeling in engineering education: Designing experiences 
for all students (pp. 317-322). Sense: Rotterdam, The Netherlands. The lead author of the 
activity is Tamara J. Moore. 
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offs between models, and to identify and understand rationales and assumptions 

underlying different models. 

Nano Roughness MEA 

This goal of this activity is to produce a procedure to quantify roughness of metal surfaces at a 
microscopic level. Students are given atomic force microscope (AFM) images, similar to the one 
below, of three different samples of metal surfaces. At the atomic level, the lighter parts of the image 
represent higher surface, and the darker parts of the image represent lower surface. The gray scale 
indicator, to the side, provides information about the height of the surface. To motivate the problem 
situation, the students learn that the company, who is their client, specializes in biomedical 
applications of nanotechnology. They are planning to produce synthetic diamond coatings for use in 
orthopedic and biomedical implants, and need to have a way to quantify roughness of the coating 
surfaces. Given three top-view images of gold samples (illustrated in the one sample below), the 
modelers are asked to develop a procedure for quantifying the roughness of the material so the 
procedure could be applied to measure roughness in other types of metal samples.  

 
Sample of an AFM image of gold surface (AFM data courtesy of Purdue University Nanoscale Physics Lab) 
 

Figure 3. Nano Roughness MEA Description 

The model-development sequence closes with a Model-Adaptation Activity 

(MAA) that requires students to adapt either their model for measuring roughness, or the 

conventional model, to a new situation. To do the work in the Purdue example, students 

were given a raw data set that had been used to produce a sample digital image. These 

raw data had been gathered by using an atomic force microscope (AFM), which uses a 

nano-scale probe dragged along the surface of the metal sample in lines at regular 
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intervals, measuring the relative heights along the bumps of the molecules. The students 

were asked to generate, using MATLAB, a cross sectional view of any line segment 

drawn on an image of the gold surface. In particular, they produced graph-like products 

that portrayed the relative heights of the bumps and valleys for any line segment drawn 

on an image. The mathematical learning goals for this MAA were to conduct 2-

dimensional array manipulations of the data and to incorporate statistical reliability 

considerations into the process. Broader learning goals for the Nano Roughness problem 

include programming and fundamental engineering principles—illustrating how 

mathematics learned may be embedded and intertwined to what traditionally has been 

considered non-mathematical topics.  

While MEAs, and their accompanying model-development sequences have 

traditionally been tied to authentic realistic modeling contexts, the basic concept of 

eliciting a mathematical model can be broadened to incorporate the more traditional 

modeling work, such as described by Garfunkel (2007). The model-development 

sequence framework can also be envisioned to include the elicitation of aspects of formal 

mathematical systems, such as what is the aim in RME. In other words, model-

development sequences have a great deal of potential to serve as an umbrella framework 

that provides a way to unify problem-driven curricula frameworks, especially when 

considering the flexibility of Learning Progress Maps (LPMs), which is proposed as a 

possible way to represent problem-driven curriculum frameworks. 

 

Envisioning a Representational System for Problem-Driven Curriculum 
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Using a metaphor of topographical maps, Learning Progress Maps (LPMs) can be 

thought of as a dynamic representation of mathematics curriculum and students’ learning 

(Lesh, Lamon, et al., 1992; Lesh, unpublished manuscript). Lesh’s goal in developing this 

concept has been to help teachers readily answer practical classroom questions such as: 

What concepts do my students still need to address in this unit I am teaching? Which 

topics would be strategic to address next? What are concepts or topic areas where my 

students appear to require more experience? Which students are having difficulty with 

specific concepts, and which have demonstrated learning in those areas? Single score 

results from large-scale measures do not provide useful information for these questions, 

whereas item-by-item information for every student might be overwhelming to use as an 

everyday tool to make decisions about classroom instruction. Portfolio assessment is 

difficult to define and standardize, let alone use for day-to-day classroom decisions about 

instruction. On the other hand, good teachers do develop their own personal methods to 

keep track of individual students’ progress in a variety of ways, although their systems 

are idiosyncratic to the teacher, often very detailed, and usually perceived by others as 

too time consuming to maintain.  

How Might a Learning Progress Map (LPM) Represent a Problem-driven Curriculum?  

Consider a hypothetical topographical map representing a curriculum organized 

around mathematical big ideas, important mathematical models, or formal mathematical 

systems, presented in Figure 4. Lesh, Lamon, et al. (1992) describe the mountains of the 

landscape as corresponding to the “big mathematical ideas” of a given course (6 to 10 big 

ideas in this case), and the surrounding terrain of foothills and valleys as depicting facts 

and skills related to the big ideas. Using the topographical maps metaphor, one can think 
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about the height of the mountain as representing the relative importance of big 

mathematical ideas in the course, while relationships among the big ideas can be 

expressed by the proximity of the mountains to each other. The tops of the mountains 

would represent deep understanding of the big idea, abilities supporting the big ideas can 

be represented on the sides of the mountains, and associated tool skills (e.g., 

manipulations, skills, facts) can be represented by the regions of the surrounding foothills 

and valleys. 

 

Figure 4. Representation of Big Ideas, Supporting Abilities, and Tools in a Course  

A top-down view of the topographical curriculum map (illustrated in Figure 5), 

might delineate the interplay of the big mathematical ideas, supporting abilities and tool 

skills to be “covered” in the given course, in a way analogous to a traditional scope-and-

sequence document.  
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Figure 5. Top Down View of Curriculum  Scope and Sequence 

On a LPM, problem-solving, modeling, deep insights into a designated 

mathematical big idea, and higher-order mathematical thinking about the idea would be 

designated in regions on the tops of the mountains. Thus, problems that involve multiple 

big mathematical ideas, such as the Nano Roughness MEA, could be represented by 

multiple mountains (e.g., 3-d geometry, proportions, sampling, measurement, 

mathematical models). The height of the mountains, and the arrangement of the regions 

around them, would represent the relative importance of the major mathematical areas 

with respect to the MEA. Supporting concepts and procedures would correspond to the 

sides of the mountain, and needed skills and facts would correspond to the adjoining 

valleys around each mountain. For example, in the Nano Roughness MEA, the fluent 

interpretation and manipulation of the scales would be an important component of 

proportional reasoning, and thus represented on the sides of a proportional reasoning 

mountain. The valleys nearby each mountain would represent the automatic skills and 

concepts that might be thought of as the tools of the trade for that big idea, such as 

masterful and precise computation or algebraic manipulation. Another illustration might 

be the linearity theme of Mathematics: Modeling out World, as described by Garfunkel 

(2007). Linearity might be the name of the mountain, and the idea of representing linear 

expressions in various forms (as narratives of situations, as tables, as graphs) may each 

correspond to regions along the side of that mountain, and fluent manipulation of linear 

equations might be represented in the valley nearby the mountain.  

The potential flexibility of the proposed representational system is greatly enabled 

by the power of technology. For example, given that the concept of linearity is a major 

theme in Course 1 of Mathematics: Modeling out World, linearity may be important to a 
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number of units, and emerge in a variety of contexts. In the mountain representational 

system for each unit, the theme of linearity may be represented as an overlay of a 

particular colors or textures (e.g., striping, dotting) on all terrains. Further, theoretical 

perspectives on learning may also be represented using different intensities of colors to 

illustrate the three dimensions in RME, or an activity’s classification in modeling 

sequences i.e., MEAs, MXAs and MAAs.  The envisioned representation of a curriculum 

framework could provide teachers with the opportunity to manipulate the map, providing 

varied views of the curriculum. For example, a teacher may want to see how linearity 

emerges across chapters within a course by viewing any and all mountains that represent 

linearity across chapters. While one can imagine many useful scenarios of manipulation, 

the greatest potential for LPMs, however, is probably representing students’ progress 

through the curriculum.  

How Might a Learning Progress Map (LPM) Serve Assessment?  

In a problem-driven curriculum framework, assessment of big ideas and models 

would be supported by LPMs which are envisioned as providing manipulable 

representations of students' attained curriculum. Specific assessment data can be used to 

“fill in” appropriate regions of a LPM for a particular student in a course. Since in a 

problem-driven curriculum, the students’ mathematical experiences begin in problem-

solving environments, and supporting skills may be learned or mastered later and at 

various levels, record-keeping is potentially very challenging. Planning assessment points 

to correspond with particular regions of the map would be a strategy for input points that 

would in turn help keep track of accomplishments by individuals, while also potentially 

providing a visual picture that organizes the assessment data for the individual students.  
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Assessment data points can be drawn from students’ responses to problem-solving 

or modeling activities and used to guide subsequent instructional activity. To illustrate, 

consider the work of Diefes-Dux and colleagues, who have been very active in 

documenting students’ modeling performance on iterations of revised solutions to MEAs. 

They have developed systematic ways to evaluate the development of mathematical 

models that students generate (e.g., Carnes, Diefes-Dux, & Cardella, 2011; Diefes-Dux, 

Zawojewski, & Hjalmarson, 2010). Their assessment rubric (Diefes-Dux, Zawojewski, 

Hjalmarson, & Cardella, 2012) that addresses four general characteristics of the models is 

made into task-specific versions for each MEA. Their recent work has focused on the 

challenge of identifying and implementing feedback to students with a goal of prompting 

students to rethink and revise their solution model to be more powerful and efficient 

(personal conversation with Diefes-Dux, January 17, 2012). One can imagine that this 

line of research would be enhanced with the proposed framework and representational 

system. For example, Diefes-Dux and colleagues’ evaluate the generalizability of 

students’ models based on three criteria. Assessment of a model’s “re-usability” 

documents the stability of the model over its independent applications; that is, whenever 

the model is re-applied to a given data set the model will produce the same results each 

time. Assessment of model’s “share-ability” documents whether the model is 

communicated well enough so that other users can apply the model independently and 

reliably. Finally, the assessment of the model’s “adaptability” focuses on the articulation 

of critical rationales and assumptions on which the model is constructed, so that an 

external user would be able to intelligently modify the model for new, somewhat 

different, circumstances. These three dimensions could be easily represented and 
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manipulated in the envisioned framework to look for patterns and trends in students’ 

series of revised models. 

In a problem-driven curriculum framework, assessment of students’ performance 

on concepts, skills, and procedures that support big ideas and models can be facilitated by 

LPMs and guided by available mathematics education research. For example, in the 

Ongoing Assessment Project (OGAP), Petit and colleagues (e.g., Petit, Laird, & Marsden, 

2010) examined all available mathematics education research in selected domains, 

identified important benchmarks and “trouble spots” of understanding, and targeted those 

specific concepts and skills for the development of assessment items and activities. They 

have completed the work on fractions, multiplication and proportions. Such assessment 

items can be used as data points in the side regions and valleys of mountains 

corresponding to the big mathematical ideas. Further, in conjunction with the growing 

body of research on learning progressions (e.g., Clements, 2004), assessment points that 

have been embedded in the learning trajectories can become benchmarks that are 

carefully placed to track general progress as students eventually abstract from their 

variety of situations to generalized mathematical ideas. 

 
How Might a Learning Progress Map (LPM) be Used to Inform Practice and Programs? 

The envisioned dynamic LPMs would provide a means for teachers to quickly and 

easily identify information relevant to day-to-day questions for teaching and students’ 

learning. For example: What concepts do my students still need to address? Which topics 

would be strategic to address next? Which students are (or are not) having difficulty with 

specific concepts? Using a keystroke, summarized students’ assessment data could 

displayed on the LPM, providing opportunities for nimble decision-making about 
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classroom practice. By illuminating the whole class’s attainment on the LPM curriculum, 

teachers would be able to see what yet needs to be addressed in the course, and what may 

need some reteaching. Profiles of individual students’ attainment could help teachers plan 

to group students for differentiated instructional experiences. LPMs could, for example, 

help teachers to form problem-solving groups by identifying students with a variety of 

expertise relevant to the problem. Individual profiles, when displayed side-by-side, could 

also inform teachers’ decisions about students access to limited resources (e.g., volunteer 

tutors, particular technological assistance, advanced placement coursework).  

Self-assessment could become a major component of classroom experience. 

Students could use their own individual profiles to self-assess their own progress, and 

perhaps even select problems through which they can address their own areas of need. In 

an advanced version of LPM, where the curriculum topics are linked to appropriate 

problems, perhaps students could select a context they like to think about (e.g., sports, 

health care), and be assigned an appropriate problem from the targeted area of need. By 

integrating an assessment system with the curricular map, LPMs could be used as a tool 

to guide students’ selection of problems that have the potential to move them forward 

mathematically. 

Professional development and program evaluation can also be enhanced through 

LPMs. Lesh, Lamon, et al., (1992) describe a variety of program level assessments that 

could be accomplished by dynamic LPMs. For example, a summary class attainment map 

that looks like the one in Figure 5, suggests instruction that is highly skill-based, and thus 

provides an opportunity to for a teacher to confront one’s own (perhaps unconscious) 

assumption that problem solving and deep conceptual understanding can only be 
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addressed after all of the “basics skills” have been accomplished. On the other hand, a 

summary class attainment map that looks like the one illustrated in Figure 6 might 

suggest that a teacher is effectively implementing a problem-driven curriculum, given 

that the attained map illustrates splashes and spreads from multiple points near the tops of 

the mountains, and oozing downward to the sides of mountains and surrounding valleys. 

 

Fig 5: LPM (green) in Skill-based Attainment by Students  

 

Fig 6: A LPM (green) in Multi-level Attainment by Students 

 

Reflections 

The envisioned problem-driven mathematics curriculum framework supported by 

a dynamic representational system, LPM, seems feasible. Given the potential of today’s 

technologies, design research (Kelly, Lesh, Baek, 2008) methodologies could be used to 
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simultaneously build, study and revise theoretical, pedagogical, and practical 

considerations of a problem-driven curriculum framework and its representational 

system. The LPM could be manipulated and revised quickly and easily in response to 

various changing conditions, such as changes in what constitutes important mathematics, 

changes in important problem context, changes in new content-driven state standards, and 

changes in interdisciplinary and social considerations. While the representational system 

has yet to be actualized, many aspects of problem-driven curricular frameworks are 

already under research and development. Imagining future work that links technology-

driven LPMs and problem-driven curriculum frameworks brings a variety research 

questions and potential issues for investigation. 

Given that problem-driven mathematics curriculum frameworks are grounded in 

the assumption that students learn mathematics while engaged in complex problem-

solving activity, a question arises about how LPMs could be used to represent such 

curricula. What would a LPM look like for a course, or a unit of study? What will be 

identified as the “big ideas” or mountains around which the mathematical terrain is 

developed? What variables need to be represented in the LPM, beyond content topics? 

What needs to be fixed and what needs to be flexible in the software? These are only a 

few of the questions that need to be answered in interdisciplinary teams of mathematics 

educators, curriculum developers, assessment experts, and software developers in a 

design process. 

How can LPMs be used to identify when, and the extent to which, problem-based 

instruction supports the given problem-based curriculum?  Collaborative research and 

development would be needed to design software to display an image, such as the one in 
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Figure 5 that represents successful implementation of problem-based instruction. The 

design of the software would require the identification of variables and development of 

models to show the splashes and spreads from multiple points near the tops of the 

mountains, oozing downward, and eventually filling in the valleys. The needed data 

include the curriculum specifications, student assessment data, and teacher input about 

experiences implemented. The goal would be to provide real-time information to teachers 

and their support personnel concerning what students are learning, and to use that 

information to adjust instructional strategies to align with those appropriate for problem-

based learning.  

How might LPMs assist classroom teachers in their enactment of a problem-

driven curriculum, yet help to keep an eye on “content coverage” as potentially required 

by other stake holders? To support implementation of problem-driven curricula in 

environments that are driven by standards and emphasize content coverage, teachers’ 

need to have tools that help them traverse the challenges of real world implementation. 

The envisioned LPMs must have embedded in them the ability to manipulate the 

representations so that teachers can easily check on “content coverage” while teaching a 

problem-based curriculum. Further, they need to be able to easily check on individual 

student progress in order to plan for reasonable differentiation. Challenges in 

implementing a problem-based curriculum must be addressed by well-designed LPMs 

that are easily used by teachers to inform their questions and issues.   
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